Abstract

The osmotic pressure in articular cartilage serves an important mechanical function in healthy tissue. Its magnitude is thought to play a role in advancing osteoarthritis. The aims of this study were to: (1) isolate and quantify the magnitude of cartilage swelling pressure in situ; and (2) identify the effect of salt concentration on material parameters. Confined compression stress-relaxation testing was performed on 18 immature bovine and six mature human cartilage samples in solutions of varying osmolarities. Direct measurements of osmotic pressure revealed nonideal and concentration-dependent osmotic behavior, with magnitudes approximately 1/3 those predicted by ideal Donnan law. A modified Donnan constitutive behavior was able to capture the aggregate behavior of all samples with a single adjustable parameter. Results of curve-fitting transient stress-relaxation data with triphasic theory in febio demonstrated concentration-dependent material properties. The aggregate modulus HA increased threefold as the external concentration decreased from hypertonic 2 M to hypotonic 0.001 M NaCl (bovine: HA=0.420±0.109MPa to 1.266±0.438MPa; human: HA=0.499±0.208MPa to 1.597±0.455MPa), within a triphasic theory inclusive of osmotic effects. This study provides a novel and simple analytical model for cartilage osmotic pressure which may be used in computational simulations, validated with direct in situ measurements. A key finding is the simultaneous existence of Donnan osmotic and Poisson–Boltzmann electrostatic interactions within cartilage.

References

References
1.
Maroudas
,
A. I.
,
1976
, “
Balance Between Swelling Pressure and Collagen Tension in Normal and Degenerate Cartilage
,”
Nature
,
260
(
5554
), pp.
808
809
.10.1038/260808a0
2.
Stockwell
,
R.
,
1991
, “
Cartilage Failure in Osteoarthritis: Relevance of Normal Structure and Function. A Review
,”
Clin. Anat.
,
4
(
3
), pp.
161
191
.10.1002/ca.980040303
3.
Glyn-Jones
,
S.
,
Palmer
,
A. J.
,
Agricola
,
R.
,
Price
,
A. J.
,
Vincent
,
T. L.
,
Weinans
,
H.
, and
Carr
,
A. J.
,
2015
, “
Osteoarthritis
,”
Lancet
,
386
(
9991
), pp.
376
387
.10.1016/S0140-6736(14)60802-3
4.
Oungoulian
,
S. R.
,
Durney
,
K. M.
,
Jones
,
B. K.
,
Ahmad
,
C. S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2015
, “
Wear and Damage of Articular Cartilage With Friction Against Orthopedic Implant Materials
,”
J. Biomech.
,
48
(
10
), pp.
1957
1964
.10.1016/j.jbiomech.2015.04.008
5.
Durney
,
K. M.
,
Shaeffer
,
C. A.
,
Zimmerman
,
B. K.
,
Nims
,
R. J.
,
Oungoulian
,
S.
,
Jones
,
B. K.
,
Boorman-Padgett
,
J. F.
,
Suh
,
J. T.
,
Shah
,
R. P.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2020
, “
Immature Bovine Cartilage Wear by Fatigue Failure and Delamination
,”
J. Biomech.
,
107
, p.
109852
.10.1016/j.jbiomech.2020.109852
6.
Hosseini
,
S. M.
,
Veldink
,
M. B.
,
Ito
,
K.
, and
van Donkelaar
,
C.
,
2013
, “
Is Collagen Fiber Damage the Cause of Early Softening in Articular Cartilage?
,”
Osteoarthritis Cartilage
,
21
(
1
), pp.
136
143
.10.1016/j.joca.2012.09.002
7.
Vazquez
,
K. J.
,
Andreae
,
J. T.
, and
Henak
,
C. R.
,
2019
, “
Cartilage-on-Cartilage Cyclic Loading Induces Mechanical and Structural Damage
,”
J. Mech. Behav. Biomed. Mater.
,
98
, pp.
262
267
.10.1016/j.jmbbm.2019.06.023
8.
Smith
,
D. W.
,
Gardiner
,
B. S.
,
Zhang
,
L.
, and
Grodzinsky
,
A. J.
,
2019
, “
Cartilage Tissue Dynamics
,”
Articular Cartilage Dynamics
,
Springer
,
Singapore
, pp.
245
309
.
9.
Riemenschneider
,
P. E.
,
Rose
,
M. D.
,
Giordani
,
M.
, and
McNary
,
S. M.
,
2019
, “
Compressive Fatigue and Endurance of Juvenile Bovine Articular Cartilage Explants
,”
J. Biomech.
,
95
, p.
109304
.10.1016/j.jbiomech.2019.07.048
10.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
58
.10.1115/1.2894880
11.
Donnan
,
F. G.
,
1924
, “
The Theory of Membrane Equilibria
,”
Chem. Rev.
,
1
(
1
), pp.
73
90
.10.1021/cr60001a003
12.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.10.1115/1.2798299
13.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics–I. Electrokinetic Transduction and the Effects of Electrolyte pH and Ionic Strength
,”
J. Biomech.
,
20
(
6
), pp.
615
627
.10.1016/0021-9290(87)90282-X
14.
Frank
,
E. H.
, and
Grodzinsky
,
A. J.
,
1987
, “
Cartilage Electromechanics–II. A Continuum Model of Cartilage Electrokinetics and Correlation With Experiments
,”
J. Biomech.
,
20
(
6
), pp.
629
639
.10.1016/0021-9290(87)90283-1
15.
Buschmann
,
M. D.
, and
Grodzinsky
,
A. J.
,
1995
, “
A Molecular Model of Proteoglycan-Associated Electrostatic Forces in Cartilage Mechanics
,”
ASME J. Biomech. Eng.
,
117
(
2
), pp.
179
192
.10.1115/1.2796000
16.
Jin
,
M.
, and
Grodzinsky
,
A. J.
,
2001
, “
Effect of Electrostatic Interactions Between Glycosaminoglycans on the Shear Stiffness of Cartilage: A Molecular Model and Experiments
,”
Macromolecules
,
34
(
23
), pp.
8330
8339
.10.1021/ma0106604
17.
Dähnert
,
K.
, and
Huster
,
D.
,
1999
, “
Comparison of the Poisson-Boltzmann Model and the Donnan Equilibrium of a Polyelectrolyte in Salt Solution
,”
J. Colloid Interface Sci.
,
215
(
1
), pp.
131
139
.10.1006/jcis.1999.6238
18.
Basser
,
P. J.
, and
Grodzinsky
,
A. J.
,
1993
, “
The Donnan Model Derived From Microstructure
,”
Biophys. Chem.
,
46
(
1
), pp.
57
68
.10.1016/0301-4622(93)87007-J
19.
Urban
,
J. P.
,
Maroudas
,
A.
,
Bayliss
,
M. T.
, and
Dillon
,
J.
,
1979
, “
Swelling Pressures of Proteoglycans at the Concentrations Found in Cartilaginous Tissues
,”
Biorheology
,
16
(
6
), pp.
447
464
.10.3233/BIR-1979-16609
20.
Grodzinsky
,
A. J.
,
Roth
,
V.
,
Myers
,
E.
,
Grossman
,
W. D.
, and
Mow
,
V. C.
,
1981
, “
The Significance of Electromechanical and Osmotic Forces in the Nonequilibrium Swelling Behavior of Articular Cartilage in Tension
,”
ASME J. Biomech. Eng.
,
103
(
4
), pp.
221
231
.10.1115/1.3138284
21.
Maroudas
,
A.
, and
Bannon
,
C.
,
1981
, “
Measurement of Swelling Pressure in Cartilage and Comparison With the Osmotic Pressure of Constituent Proteoglycans
,”
Biorheology
,
18
(
3–6
), pp.
619
632
.10.3233/BIR-1981-183-624
22.
Myers
,
E. R.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1984
, “
A Continuum Theory and an Experiment for the Ion-Induced Swelling Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
106
(
2
), pp.
151
158
.10.1115/1.3138473
23.
Eisenberg
,
S. R.
, and
Grodzinsky
,
A. J.
,
1985
, “
Swelling of Articular Cartilage and Other Connective Tissues: Electromechanochemical Forces
,”
J. Orthop. Res.
,
3
(
2
), pp.
148
–1
59
.10.1002/jor.1100030204
24.
Lu
,
X. L.
,
Miller
,
C.
,
Chen
,
F. H.
,
Guo
,
X. E.
, and
Mow
,
V. C.
,
2007
, “
The Generalized Triphasic Correspondence Principle for Simultaneous Determination of the Mechanical Properties and Proteoglycan Content of Articular Cartilage by Indentation
,”
J. Biomech.
,
40
(
11
), pp.
2434
2441
.10.1016/j.jbiomech.2006.11.015
25.
Lu
,
X. L.
,
Mow
,
V. C.
, and
Guo
,
X. E.
,
2009
, “
Proteoglycans and Mechanical Behavior of Condylar Cartilage
,”
J. Dental Res.
,
88
(
3
), pp.
244
248
.10.1177/0022034508330432
26.
Mow
,
V.
,
Ateshian
,
G.
,
Lai
,
W.
, and
Gu
,
W.
,
1998
, “
Effects of Fixed Charges on the Stress–Relaxation Behavior of Hydrated Soft Tissues in a Confined Compression Problem
,”
Int. J. Solids Struct.
,
35
(
34–35
), pp.
4945
4962
.10.1016/S0020-7683(98)00103-6
27.
Ateshian
,
G. A.
,
Chahine
,
N. O.
,
Basalo
,
I. M.
, and
Hung
,
C. T.
,
2004
, “
The Correspondence Between Equilibrium Biphasic and Triphasic Material Properties in Mixture Models of Articular Cartilage
,”
J. Biomech.
,
37
(
3
), pp.
391
400
.10.1016/S0021-9290(03)00252-5
28.
Lu
,
X. L.
,
Wan
,
L. Q.
,
Guo
,
X. E.
, and
Mow
,
V. C.
,
2010
, “
A Linearized Formulation of Triphasic Mixture Theory for Articular Cartilage, and Its Application to Indentation Analysis
,”
J. Biomech.
,
43
(
4
), pp.
673
679
.10.1016/j.jbiomech.2009.10.026
29.
Ehrlich
,
S.
,
Wolff
,
N.
,
Schneiderman
,
R.
,
Maraudas
,
A.
,
Parker
,
K.
, and
Winlove
,
C.
,
1998
, “
The Osmotic Pressure of Chondroitin Sulphate Solutions: Experimental Measurements and Theoretical Analysis
,”
Biorheology
,
35
(
6
), pp.
383
397
.10.1016/S0006-355X(99)80018-3
30.
Chahine
,
N. O.
,
Chen
,
F. H.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2005
, “
Direct Measurement of Osmotic Pressure of Glycosaminoglycan Solutions by Membrane Osmometry at Room Temperature
,”
Biophys. J.
,
89
(
3
), pp.
1543
1550
.10.1529/biophysj.104.057315
31.
Khalsa
,
P. S.
, and
Eisenberg
,
S. R.
,
1997
, “
Compressive Behavior of Articular Cartilage is Not Completely Explained by Proteoglycan Osmotic Pressure
,”
J. Biomech.
,
30
(
6
), pp.
589
594
.10.1016/S0021-9290(97)84508-3
32.
Lai
,
W. M.
,
Gu
,
W. Y.
, and
Mow
,
V. C.
,
1998
, “
On the Conditional Equivalence of Chemical Loading and Mechanical Loading on Articular Cartilage
,”
J. Biomech.
,
31
(
12
), pp.
1181
1185
.10.1016/S0021-9290(98)00099-2
33.
Canal Guterl
,
C.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2010
, “
Electrostatic and Non-Electrostatic Contributions of Proteoglycans to the Compressive Equilibrium Modulus of Bovine Articular Cartilage
,”
J. Biomech.
,
43
(
7
), pp.
1343
1350
.10.1016/j.jbiomech.2010.01.021
34.
Ateshian
,
G. A.
,
Maas
,
S.
, and
Weiss
,
J. A.
,
2013
, “
Multiphasic Finite Element Framework for Modeling Hydrated Mixtures With Multiple Neutral and Charged Solutes
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111001
.10.1115/1.4024823
35.
Lu
,
X. L.
,
Sun
,
D. D. N.
,
Guo
,
X. E.
,
Chen
,
F. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
2004
, “
Indentation Determined Mechanoelectrochemical Properties and Fixed Charge Density of Articular Cartilage
,”
Ann. Biomed. Eng.
,
32
(
3
), pp.
370
379
.10.1023/B:ABME.0000017534.06921.24
36.
Oswald
,
E. S.
,
Chao
,
P.-H. G.
,
Bulinski
,
J. C.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2008
, “
Dependence of Zonal Chondrocyte Water Transport Properties on Osmotic Environment
,”
Cell Mol. Bioeng.
,
1
(
4
), pp.
339
348
.10.1007/s12195-008-0026-6
37.
Ateshian
,
G. A.
,
1997
, “
A Theoretical Formulation for Boundary Friction in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
119
(
1
), pp.
81
86
.10.1115/1.2796069
38.
Hamer
,
W. J.
, and
Wu
,
Y.-C.
,
1972
, “
Osmotic Coefficients and Mean Activity Coefficients of Uni-Univalent Electrolytes in Water at 25 °C
,”
J. Phys. Chem. Ref Data
,
1
(
4
), pp.
1047
1100
.10.1063/1.3253108
39.
Maroudas
,
A.
,
1974
, “
Transport Through Articular Cartilage and Some Physiological Implications
,”
Normal and Osteorarthrotic Articular Cartilage
,
Institute of Orthopaedics
,
London
, pp.
33
47
.
40.
Maroudas
,
A.
, and
Evans
,
H.
,
1972
, “
A Study of Ionic Equilibria in Cartilage
,”
Connect. Tissue Res.
,
1
(
1
), pp.
69
77
.10.3109/03008207209152058
41.
Huyghe
,
J. M.
, and
Janssen
,
J.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.10.1016/S0020-7225(96)00119-X
42.
Manning
,
G. S.
,
1969
, “
Limiting Laws and Counterion Condensation in Polyelectrolyte Solutions I. Colligative Properties
,”
J. Chem. Phys.
,
51
(
3
), pp.
924
933
.10.1063/1.1672157
43.
Mauck
,
R. L.
,
Soltz
,
M. A.
,
Wang
,
C. C.
,
Wong
,
D. D.
,
Chao
,
P.-H. G.
,
Valhmu
,
W. B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2000
, “
Functional Tissue Engineering of Articular Cartilage Through Dynamic Loading of Chondrocyte-Seeded Agarose Gels
,”
ASME J. Biomech. Eng.
,
122
(
3
), pp.
252
260
.10.1115/1.429656
44.
Outerbridge
,
R. E.
,
1961
, “
The Etiology of Chondromalacia Patellae
,”
J. Bone Jt. Surg. Br.
,
43-B
(
4
), pp.
752
757
.10.1302/0301-620X.43B4.752
45.
Slattery
,
C.
, and
Kweon
,
C. Y.
,
2018
, “
Classifications in Brief: Outerbridge Classification of Chondral Lesions
,”
Clin. Orthop. Relat. Res.
,
476
(
10
), pp.
2101
2104
.10.1007/s11999.0000000000000255
46.
Holmes
,
M. H.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1985
, “
Singular Perturbation Analysis of the Nonlinear, Flow-Dependent Compressive Stress Relaxation Behavior of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
107
(
3
), pp.
206
218
.10.1115/1.3138545
47.
Ateshian
,
G. A.
,
Warden
,
W. H.
,
Kim
,
J. J.
,
Grelsamer
,
R. P.
, and
Mow
,
V. C.
,
1997
, “
Finite Deformation Biphasic Material Properties of Bovine Articular Cartilage From Confined Compression Experiments
,”
J. Biomech.
,
30
(
11–12
), pp.
1157
1164
.10.1016/S0021-9290(97)85606-0
48.
Buschmann
,
M. D.
,
Soulhat
,
J.
,
Shirazi-Adl
,
A.
,
Jurvelin
,
J. S.
, and
Hunziker
,
E. B.
,
1997
, “
Confined Compression of Articular Cartilage: Linearity in Ramp and Sinusoidal Tests and the Importance of Interdigitation and Incomplete Confinement
,”
J. Biomech.
,
31
(
2
), pp.
171
8
.10.1016/S0021-9290(97)00124-3
49.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage
,”
Ann. Biomed. Eng.
,
28
(
2
), pp.
150
159
.10.1114/1.239
50.
Farndale
,
R. W.
,
Buttle
,
D. J.
, and
Barrett
,
A. J.
,
1986
, “
Improved Quantitation and Discrimination of Sulphated Glycosaminoglycans by Use of Dimethylmethylene Blue
,”
Biochim. Biophys. Acta
,
883
(
2
), pp.
173
177
.10.1016/0304-4165(86)90306-5
51.
Maas
,
S. A.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
FEBio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p.
011005
.10.1115/1.4005694
52.
Bonet
,
J.
, and
Wood
,
R. D.
,
2008
,
Nonlinear Continuum Mechanics for Finite Element Analysis
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK and New York
.
53.
Mow
,
V.
,
Kwan
,
M.
,
Lai
,
W.
, and
Holmes
,
M.
,
1986
, “
A Finite Deformation Theory for Nonlinearly Permeable Soft Hydrated Biological Tissues
,”
Frontiers in Biomechanics
,
Springer
,
New York
, pp.
153
179
.10.1007/978-1-4612-4866-8_13
54.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
–11
56
.10.1016/0021-9290(90)90007-P
55.
Nielsen
,
J. M.
,
Adamson
,
A. W.
, and
Cobble
,
J. W.
,
1952
, “
The Self-Diffusion Coefficients of the Ions in Aqueous Sodium Chloride and Sodium Sulfate at 25°
,”
J. Am. Chem. Soc.
,
74
(
2
), pp.
446
451
.10.1021/ja01122a050
56.
Vitagliano
,
V.
, and
Lyons
,
P. A.
,
1956
, “
Diffusion Coefficients for Aqueous Solutions of Sodium Chloride and Barium Chloride
,”
J. Am. Chem. Soc.
,
78
(
8
), pp.
1549
1552
.10.1021/ja01589a011
57.
Gu
,
W. Y.
,
Lai
,
W. M.
, and
Mow
,
V. C.
,
1993
, “
Transport of Fluid and Ions Through a Porous-Permeable Charged-Hydrated Tissue, and Streaming Potential Data on Normal Bovine Articular Cartilage
,”
J. Biomech.
,
26
(
6
), pp.
709
723
.10.1016/0021-9290(93)90034-C
58.
Glass
,
G. V.
,
Peckham
,
P. D.
, and
Sanders
,
J. R.
,
1972
, “
Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance
,”
Rev. Educ. Res.
,
42
(
3
), pp.
237
288
.10.3102/00346543042003237
59.
Ito
,
P.
,
1980
, “
7 Robustness of Anova and Manova Test Procedures
,”
Handbook Statistics
, Vol.
1
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
199
236
. 10.1016/S0169-7161(80)01009-7
60.
Dean
,
D.
,
Han
,
L.
,
Grodzinsky
,
A. J.
, and
Ortiz
,
C.
,
2006
, “
Compressive Nanomechanics of Opposing Aggrecan Macromolecules
,”
J. Biomech.
,
39
(
14
), pp.
2555
2565
.10.1016/j.jbiomech.2005.09.007
61.
Dai
,
H.
,
Potter
,
K.
, and
McFarland
,
E. W.
,
1996
, “
Determination of Ion Activity Coefficients and Fixed Charge Density in Cartilage With 23Na Magnetic Resonance Microscopy
,”
J. Chem. Eng. Data
,
41
(
5
), pp.
970
976
.10.1021/je9600257
62.
Albro
,
M. B.
,
Rajan
,
V.
,
Li
,
R.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2009
, “
Characterization of the Concentration-Dependence of Solute Diffusivity and Partitioning in a Model Dextran-Agarose Transport System
,”
Cell Mol. Bioeng.
,
2
(
3
), pp.
295
305
.10.1007/s12195-009-0076-4
63.
Kovach
,
I. S.
,
1995
, “
The Importance of Polysaccharide Configurational Entropy in Determining the Osmotic Swelling Pressure of Concentrated Proteoglycan Solution and the Bulk Compressive Modulus of Articular Cartilage
,”
Biophys. Chem.
,
53
(
3
), pp.
181
187
.10.1016/0301-4622(94)00100-X
64.
Oungoulian
,
S. R.
,
Hehir
,
K. E.
,
Zhu
,
K.
,
Willis
,
C. E.
,
Marinescu
,
A. G.
,
Merali
,
N.
,
Ahmad
,
C. S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2014
, “
Effect of Glutaraldehyde Fixation on the Frictional Response of Immature Bovine Articular Cartilage Explants
,”
J. Biomech.
,
47
(
3
), pp.
694
701
.10.1016/j.jbiomech.2013.11.043
65.
Schinagl
,
R. M.
,
Gurskis
,
D.
,
Chen
,
A. C.
, and
Sah
,
R. L.
,
1997
, “
Depth-Dependent Confined Compression Modulus of Full-Thickness Bovine Articular Cartilage
,”
J. Orthop. Res.
,
15
(
4
), pp.
499
506
.10.1002/jor.1100150404
66.
Chen
,
S. S.
,
Falcovitz
,
Y. H.
,
Schneiderman
,
R.
,
Maroudas
,
A.
, and
Sah
,
R. L.
,
2001
, “
Depth-Dependent Compressive Properties of Normal Aged Human Femoral Head Articular Cartilage: Relationship to Fixed Charge Density
,”
Osteoarthritis Cartilage
,
9
(
6
), pp.
561
569
.10.1053/joca.2001.0424
67.
Wang
,
C. C.-B.
,
Deng
,
J.-M.
,
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2002
, “
An Automated Approach for Direct Measurement of Two-Dimensional Strain Distributions Within Articular Cartilage Under Unconfined Compression
,”
ASME J. Biomech. Eng.
,
124
(
5
), pp.
557
567
.10.1115/1.1503795
68.
Wang
,
C. C.-B.
,
Chahine
,
N. O.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Optical Determination of Anisotropic Material Properties of Bovine Articular Cartilage in Compression
,”
J. Biomech.
,
36
(
3
), pp.
339
353
.10.1016/S0021-9290(02)00417-7
69.
Chahine
,
N. O.
,
Wang
,
C. C.-B.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2004
, “
Anisotropic Strain-Dependent Material Properties of Bovine Articular Cartilage in the Transitional Range From Tension to Compression
,”
J. Biomech.
,
37
(
8
), pp.
1251
1261
.10.1016/j.jbiomech.2003.12.008
70.
Canal
,
C. E.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2008
, “
Two-Dimensional Strain Fields on the Cross-Section of the Bovine Humeral Head Under Contact Loading
,”
J. Biomech.
,
41
(
15
), pp.
3145
3151
.10.1016/j.jbiomech.2008.08.031
71.
Guterl
,
C. C.
,
Gardner
,
T. R.
,
Rajan
,
V.
,
Ahmad
,
C. S.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2009
, “
Two-Dimensional Strain Fields on the Cross-Section of the Human Patellofemoral Joint Under Physiological Loading
,”
J. Biomech.
,
42
(
9
), pp.
1275
1281
.10.1016/j.jbiomech.2009.03.034
72.
Wells
,
J.
,
1973
, “
Thermodynamics of Polyelectrolyte Solutions. An Empirical Extension of the Manning Theory to Finite Salt Concentrations
,”
Biopolym. Orig. Res. Biomol.
,
12
(
2
), pp.
223
227
.10.1002/bip.1973.360120202
73.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model Mechanobiol.
,
6
(
6
), pp.
423
–4
45
.10.1007/s10237-006-0070-x
You do not currently have access to this content.