Abstract

Though energy attenuating (EA) seats for air and spacecraft applications have existed for decades, they have not yet been fully characterized for their energy attenuation capability or resulting effect on occupant protection in vertical underbody blast. EA seats utilize stroking mechanisms to absorb energy and reduce the vertical forces imparted on the occupant's pelvis and lower spine. Using dynamic rigid-body modeling, a virtual tool to determine optimal force and deflection limits was developed to reduce pelvis and lower spine injuries in underbody blast events using a generic seat model. The tool consists of a mathematical dynamic model (MADYMO)-modified human body model (HBM), basic EA seat model, and an optimizing sequence using modefrontier software. This optimizing tool may be shared with EA seat manufacturers and applied to military seat development efforts for EA mechanisms for a given occupant and designated blast severity. To optimally tune the EA seat response, the MADYMO human body model was first updated to improve its fidelity in kinematic response data for high rate vertical accelerative loading relative to experimental data from laboratory simulated underbody blast tests using postmortem human surrogates (PMHS). Subsequently, using available injury criteria for underbody blast, the optimization tool demonstrated the ability to identify successful EA mechanism critical design value configurations to reduce forces and accelerations in the pelvis and lower spine HBM to presumed noninjurious levels. This tool could be tailored by varying input pulses, force and deflection limits, and occupant size to evaluate EA mechanism designs.

References

1.
Alvarez
,
J.
,
2011
, “
Epidemiology of Blast Injuries in Current Operations
,”
Proceedings of RTO Human Factors and Medicine Panel (HFM) Symposium
,
Halifax, NS, Canada
, Oct. 3–5, Paper No. RTO‐MP‐HFM‐207.
2.
Weaver
,
C. M.
, and
Stitzel
,
J. D.
,
2015
, “
Pelvic Response of a Total Human Body Finite Element Model During Simulated Under Body Blast Impacts
,”
Proceedings of the International IRCOBI Conference on the Biomechanics of Injury
, Lyon, France, Sept. 9–11.http://www.ircobi.org/wordpress/downloads/irc15/pdf_files/82.pdf
3.
Spratley
,
E. M.
,
Rawska
,
K.
,
Demetropoulus
,
C. K.
,
Merkle
,
A. C.
, and
Salzar
,
R. S.
,
2016
, “
Local vs. Global Motion in Whole-Body UBB Testing
,” NATO, Washington, DC, Paper No. HFM-271.
4.
Loftis
,
K. L.
,
Mazuchowski
,
L. C. E. L.
, II
,
Clouser
,
M. C.
, and
Gillich
,
P. J.
,
2019
, “
Prominent Injury Types in Vehicle Underbody Blast
,”
Military Med.
,
184
(
Suppl_1
), pp.
261
264
.10.1093/milmed/usy322
5.
Nance
,
S.
,
2014
, “
Blast-Attenuating Seats. Science and Technology Save Lives From Hidden Threats
,”
Ground Combat & Tactical USR Annual AUSA Issue
.
6.
Desjardins
,
S.
,
2003
, “
The Evolution of Energy Absorption Systems for Crashworthy Helicopter Seats
,”
American Helicopter Society 59th Annual Forum
,
Phoenix, AZ
, May 6–8.https://fire.tc.faa.gov/2004Conference/files/crash/S.Desjardins_Energy_absorption-helicopter_seats.pdf
7.
Bosch
,
K. E. B.
,
2019
, “
Optimization of Underbody Blast Energy-Attenuating Seat Mechanisms Using Modified MADYMO Hybrid III and Human Body Models
,”
Doctoral dissertation
,
Wayne State University Dissertations 2252
,
Detroit, MI
.https://digitalcommons.wayne.edu/oa_dissertations/2252/
8.
Olivares
,
G.
,
High G Energy Absorbing Seat Mechanism for Vertical Loading Conditions
,
Wichita State University
,
Wichita, KS
, Identification No. 11IP008.
9.
Chen
,
Y.
,
Wickramasinghe
,
V.
, and
Zimcik
,
D.
,
2015
, “
Development and Evaluation of Hybrid Seat Cushions for Helicopter Aircrew Vibration Mitigation
,”
J. Intell. Mater. Syst. Struct.
,
26
(
13
), pp.
1633
1645
.10.1177/1045389X14566522
10.
Tabiei
,
A.
, and
Nilakantan
,
G.
,
2007
,
Reduction of Acceleration Induced Injuries From Mine Blasts Under Infantry Vehicles
,
Department of Aerospace Engineering and Engineering Mechanics, University of Cincinnati
,
Cincinnati, OH
.
11.
Danelson
,
K. A.
,
Kemper
,
A. R.
,
Mason
,
M. J.
,
Tegtmeyer
,
M.
,
Swiatkowski
,
S. A.
,
Bolte
,
J. H.
, IV
, and
Hardy
,
W. N.
,
2015
, “
Comparison of ATD to PMHS Response in the Under-Body Blast Environment
,”
Stapp Car Crash J.
,
59
, pp.
445
520
.https://pubmed.ncbi.nlm.nih.gov/26660754/#:~:text=Damage%20to%20the%20PMHS%20lower,of%20the%20PMHS%20lower%20extremities
12.
Bailey
,
A.
,
Christopher
,
J.
,
Brozoski
,
F.
, and
Salzar
,
R.
,
2015
, “
Post Mortem Human Surrogate Injury Response of the Pelvis and Lower Extremities to Simulated Underbody Blast
,”
Ann. Biomed. Eng.
,
43
(
8
), pp.
1907
1917
.10.1007/s10439-014-1211-5
13.
Bailey
,
A.
,
Christopher
,
J.
,
Henderson
,
K.
,
Brozoski
,
F.
, and
Salzar
,
R.
,
2013
, “
Comparison of Hybrid-III and PMHS Response to Simulated Underbody Blast Loading Conditions
,” IRCOBI Conference, Gothenburg, Sweden, Sept. 11–13, Paper No.
IRC-13-25
.http://www.ircobi.org/wordpress/downloads/irc13/pdf_files/25.pdf
14.
Pietsch
,
H. A.
,
Bosch
,
K. E.
,
Weyland
,
D. R.
,
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Salzar
,
R. S.
,
Smith
,
T. A.
,
Sagara
,
B. M.
,
Demetropoulos
,
C. K.
,
Dooley
,
C. J.
, and
Merkle
,
A. C.
,
2016
, “
Evaluation of WIAMan Technology Demonstrator-Biofidelity Relative to Sub-Injurious PMHS Response in Simulated Under-Body Blast Events
,”
Stapp Car Crash J.
,
60
, pp.
199
246
.https://pubmed.ncbi.nlm.nih.gov/27871099/
15.
Greenhalgh
,
P. G.
,
Panzer
,
M. D.
,
Spratley
,
E. M.
, and
Salzar
,
R. S.
,
2018
, “
Analysis of Forces Through the Seated Pelvis During Under Body Blasts
,”
13th World Congress on Computational Mechanics
, New York, July 22–27, Paper No. WCCM2018-1017.
16.
Perry
,
B. J.
,
Henderson
,
K. A.
,
Spratley
,
E. M.
,
Zhang
,
J. Y.
,
Merkle
,
A. C.
, and
Salzar
,
R. S.
,
2016
, “
Effects of Seated Soldier Posture on Pelvic Force Transmissibility
,” Summer Biomechanics, Bioengineering and Biotransport Conference, National Harbor, MD, June 29–July 2.
17.
Spratley
,
E. M.
,
Rawska
,
K.
,
Kim
,
T.
, and
Salzar
,
R. S.
,
2015
, “
Fidelity of the MADYMO Facet Pedestrian Model for Simulation of Underbody Blast Events
,”
53rd Annual SAFE Symposium
, Orlando, FL, Nov. 2–4.
18.
Carter
,
J. A.
,
MacLeod
,
D.
, and
Callahan
,
P.
,
2012
, “
Blast Mitigating Seat
,” U.S. Patent 8,091,964 B2.
19.
SAE Aerospace Standard
,
2015
, “
Performance Standard for Seats in Civil Rotorcraft, Transport Aircraft, and General Aviation Aircraft
,”
SAE
Standard No. AS8049.https://www.sae.org/standards/content/as8049/#:~:text=The%20goal%20is%20to%20achieve,conditions%20set%20forth%20in%20the
20.
Oxland
,
T. R.
,
1992
, “
Burst Fractures of the Human Thoracolumbar Spine: A Biomechanical Investigation
,” Ph.D. dissertation,
Yale University
,
New Haven, CT
.
21.
Yoganandan
,
N.
,
2014
, “
Dynamic Responses of Intact Post Mortem Human Surrogates From Inferior-to-Superior Loading at the Pelvis
,”
Stapp Car Crash J.
,
58
, pp.
123
–143.https://pubmed.ncbi.nlm.nih.gov/26192952/
22.
Chandra
,
S.
,
Ramalingam
,
J.
, and
Thyagarajan
,
R.
,
2014
, “
Reduced Order Modeling for Rapid Simulation of Blast Events of a Military Ground Vehicle and Its Occupants
,”
NDIA Ground Vehicle Systems Engineering and Technology Symposium
, Novi, MI, Aug. 12–14.https://apps.dtic.mil/dtic/tr/fulltext/u2/a609195.pdf
23.
Society of Automotive Engineers
,
1995
, “
Surface Vehicle Recommended Practice J211-1: Instrumentation for Impact Test. Part 1: Electronic Instrumentation
,”
SAE
Paper No. 1995-03-01.
24.
Poles
,
S.
,
2003
, “
The SIMPLEX Method
,” ESTECO, Novi, MI, Report No. 2003–005.
25.
Zaseck
,
L.
,
Bonifas
,
A.
,
Miller
,
C.
,
Orton
,
N.
,
Reed
,
M.
,
Demetropoulos
,
C.
,
Ott
,
K.
,
Dooley
,
C.
,
Kuo
,
N.
,
Strohsnitter
,
L.
,
Andrist
,
J.
,
Luongo
,
M.
,
Drewry
,
D.
, III
, and
Merkle
,
A.
,
2019
, “
Kinematic and Biomechanical Response of Post-Mortem Human Subjects Under Various Pre-Impact Postures to High-Rate Vertical Loading Conditions
,”
Stapp Car Crash J.
,
63
, pp.
235
266
.https://pubmed.ncbi.nlm.nih.gov/32311059/
26.
Danelson
,
K.
,
Watkins
,
L.
,
Hendricks
,
J.
,
Frounfelker
,
P.
,
Pizzolato-Heine
,
K.
,
Valentine
,
R.
, and
Loftis
,
K.
,
WIAMan Case Review Team,
2018
, “
Analysis of the Frequency and Mechanism of Injury to Warfighters in the Under-Body Blast Environment
,”
Stapp Car Crash J.
,
62
, pp.
489
513
.
27.
Iluk, A.
,
2012
, “
Selected Aspects of the Control of the Human Body Motion in the Vehicle Subjected to the Blast Load
,” IRCOBI Conference, Dublin, Ireland, Sept. 12–14, Paper No.
IRC-12-48
.10.13140/2.1.3010.6566
28.
Van der Horst
,
M. J.
, and
Leerdam
,
P. J. C.
,
2002
,
Experimental and Numerical Analysis of Occupant Safety in Blast Mine Loading Under Vehicles
,
TNO Prins Maurits Laboratory
,
Rijswijk, The Netherlands.
29.
MADYMO,
2015
,
Human Body Models Manual Release 7.6
,
TASS International
,
Livonia, MI
.
30.
Somasundaram
,
K.
,
Kalra
,
A.
,
Sherman
,
D.
,
Begeman
,
P.
,
Yang
,
K. H.
, and
Cavanaugh
,
J.
,
2017
, “
An Experimental and Numerical Study of Hybrid III Dummy Response to Simulated Underbody Blast Impacts
,”
ASME J. Biomech Eng..
139
(
12
), p.
121002
.10.1115/1.4037591
31.
Begeman
,
P. C.
,
Visarius
,
H.
,
Nolte
,
L. P.
, and
Prasad
,
P.
,
1994
, “
Viscoelastic Shear Responses of the Cadaver and Hybrid III Lumbar Response
,”
38th Stapp Car Crash Conference
,
Ft. Lauderdale, FL,
Oct. 31–Nov. 2, p.
14
.10.4271/PT-153
32.
Rupp
,
J. D.
,
Flannagan
,
C. A. C.
, and
Kuppa
,
S. M.
,
2010
, “
An Injury Risk Curve for the Hip for Use in Frontal Impact Crash Testing
,”
J. Biomech.
,
43
(
3
), pp.
527
531
.10.1016/j.jbiomech.2009.09.038
33.
Yoganandan
,
N.
,
Moore
,
J.
,
Pintar
,
F.
,
Banerjee
,
A.
,
DeVogel
,
N.
, and
Zhang
,
J.
,
2018
, “
Role of Disc Area and Trabecular Bone Density on Lumbar Spinal Column Fracture Risk Curves Under Vertical Impact
,”
J. Biomech.
,
72
(
2018
), pp.
90
98
.10.1016/j.jbiomech.2018.02.030
34.
Yoganandan
,
N.
,
DeVogel
,
N.
,
Moore
,
J.
,
Pintar
,
F.
,
Banerjee
,
A.
, and
Zhang
,
J.
,
2020
, “
Human Lumbar Spine Responses From Vertical Loading: Ranking of Roces Via Brier Score Metrics and Injury Risk Curves
,”
Ann. Biomed. Eng.
,
48
(
1
), pp.
79
91
.10.1007/s10439-019-02363-5
35.
Spratley
,
E. M.
,
Henderson
,
K. A.
,
Merkle
,
A. C.
, and
Salzar
,
R. S.
,
2016
, “
Repeatability and Matched-Pair Response Between PMHS and Hybrid-III Using the UVA Odyssey Underbody Blast Simulator
,”
Proceedings of the International IRCOBI Conference on the Biomechanics of Injury
, Malaga, Spain, Sept. 14–16.
You do not currently have access to this content.