Abstract

Aneurysms are localized expansions of weakened blood vessels that can be debilitating or fatal upon rupture. Previous studies have shown that flow in an aneurysm exhibits complex flow structures that are correlated with its inflow conditions. Therefore, the objective of this study was to demonstrate the application of proper orthogonal decomposition (POD) to study the impact of different inflow conditions on energetic flow structures and their temporal behavior in an aneurysm. To achieve this objective, experiments were performed on an idealized rigid sidewall aneurysm model. A piston pump system was used for precise inflow control, i.e., peak Reynolds number (Rep) and Womersley number (α) were varied from 50 to 270 and 2 to 5, respectively. The velocity flow field measurements at the midplane location of the idealized aneurysm model were performed using particle image velocimetry (PIV). The results demonstrate the efficacy of POD in decomposing complex data, and POD was able to capture the energetic flow structures unique to each studied inflow condition. Furthermore, the time-varying coefficient results highlighted the interplay between the coefficients and their corresponding POD modes, which in turn helped explain how POD modes impact certain flow features. The low-order reconstruction results were able to capture the flow evolution and provide information on complex flow in an aneurysm. The POD and low-order reconstruction results also indicated that vortex formation, evolution, and convection varied with an increase in α, while vortex strength and formation of secondary structures were correlated with an increase in Rep.

References

1.
Wiebers
,
D. O.
,
Torner
,
J. C.
, and
Meissner
,
I.
,
1992
, “
Impact of Unruptured Intracranial Aneurysms on Public Health in the United States
,”
Stroke
,
23
(
10
), pp.
1416
1419
.10.1161/01.STR.23.10.1416
2.
Vega
,
C.
,
Kwoon
,
J. V.
, and
Lavine
,
S. D.
,
2002
, “
Intracranial Aneurysms: Current Evidence and Clinical Practice
,”
Am. Family Phys.
,
66
(
4
), pp.
601
610
.https://pubmed.ncbi.nlm.nih.gov/12201551/
3.
Rinkel
,
G. J.
,
Djibuti
,
M.
,
Algra
,
A.
, and
Van Gijn
,
J.
,
1998
, “
Prevalence and Risk of Rupture of Intracranial Aneurysms: A Systematic Review
,”
Stroke
,
29
(
1
), pp.
251
256
.10.1161/01.STR.29.1.251
4.
Cebral
,
J. R.
, and
Raschi
,
M.
,
2013
, “
Suggested Connections Between Risk Factors of Intracranial Aneurysms: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1366
1383
.10.1007/s10439-012-0723-0
5.
Sadasivan
,
C.
,
Fiorella
,
D. J.
,
Woo
,
H. H.
, and
Lieber
,
B. B.
,
2013
, “
Physical Factors Effecting Cerebral Aneurysm Pathophysiology
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1347
1365
.10.1007/s10439-013-0800-z
6.
Sforza
,
D. M.
,
Putman
,
C. M.
, and
Cebral
,
J. R.
,
2009
, “
Hemodynamics of Cerebral Aneurysms
,”
Annu. Rev. Fluid Mech.
,
41
(
1
), pp.
91
107
.10.1146/annurev.fluid.40.111406.102126
7.
Brisman
,
J. L.
,
Song
,
J. K.
, and
Newell
,
D. W.
,
2006
, “
Cerebral Aneurysms
,”
New Engl. J. Med.
,
355
(
9
), pp.
928
939
.10.1056/NEJMra052760
8.
Lasheras
,
J. C.
,
2007
, “
The Biomechanics of Arterial Aneurysms
,”
Annu. Rev. Fluid Mech.
,
39
(
1
), pp.
293
319
.10.1146/annurev.fluid.39.050905.110128
9.
Fahrig
,
R.
,
Nikolov
,
H.
,
Fox
,
A.
, and
Holdsworth
,
D.
,
1999
, “
A Three-Dimensional Cerebrovascular Flow Phantom
,”
Med. Phys.
,
26
(
8
), pp.
1589
1599
.10.1118/1.598672
10.
Hopkins
,
L.
,
Kelly
,
J.
,
Wexler
,
A.
, and
Prasad
,
A.
,
2000
, “
Particle Image Velocimetry Measurements in Complex Geometries
,”
Exp. Fluids
,
29
(
1
), pp.
91
95
.10.1007/s003480050430
11.
Ugron
,
Á.
,
Farinas
,
M.-I.
,
Kiss
,
L.
, and
Paál
,
G.
,
2012
, “
Unsteady Velocity Measurements in a Realistic Intracranial Aneurysm Model
,”
Exp. Fluids
,
52
(
1
), pp.
37
52
.10.1007/s00348-011-1206-z
12.
Geoghegan
,
P.
,
Buchmann
,
N.
,
Spence
,
C.
,
Moore
,
S.
, and
Jermy
,
M.
,
2012
, “
Fabrication of Rigid and Flexible Refractive-Index-Matched Flow Phantoms for Flow Visualisation and Optical Flow Measurements
,”
Exp. Fluids
,
52
(
5
), pp.
1331
1347
.10.1007/s00348-011-1258-0
13.
Le
,
T. B.
,
Troolin
,
D. R.
,
Amatya
,
D.
,
Longmire
,
E. K.
, and
Sotiropoulos
,
F.
,
2013
, “
Vortex Phenomena in Sidewall Aneurysm Hemodynamics: Experiment and Numerical Simulation
,”
Ann. Biomed. Eng.
,
41
(
10
), pp.
2157
2170
.10.1007/s10439-013-0811-9
14.
Di Martino
,
E. S.
,
Guadagni
,
G.
,
Fumero
,
A.
,
Ballerini
,
G.
,
Spirito
,
R.
,
Biglioli
,
P.
, and
Redaelli
,
A.
,
2001
, “
Fluid–Structure Interaction Within Realistic Three-Dimensional Models of the Aneurysmatic Aorta as a Guidance to Assess the Risk of Rupture of the Aneurysm
,”
Med. Eng. Phys.
,
23
(
9
), pp.
647
655
.10.1016/S1350-4533(01)00093-5
15.
Baharoglu
,
M. I.
,
Schirmer
,
C. M.
,
Hoit
,
D. A.
,
Gao
,
B.-L.
, and
Malek
,
A. M.
,
2010
, “
Aneurysm Inflow-Angle as a Discriminant for Rupture in Sidewall Cerebral Aneurysms: Morphometric and Computational Fluid Dynamic Analysis
,”
Stroke
,
41
(
7
), pp.
1423
1430
.10.1161/STROKEAHA.109.570770
16.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Zhang
,
Y.
,
Wang
,
W.
,
Liang
,
X.
,
Kvamsdal
,
T.
,
Brekken
,
R.
, and
Isaksen
,
J.
,
2010
, “
A Fully-Coupled Fluid-Structure Interaction Simulation of Cerebral Aneurysms
,”
Comput. Mech.
,
46
(
1
), pp.
3
16
.10.1007/s00466-009-0421-4
17.
McCormick
,
W. F.
, and
Acosta-Rua
,
G. J.
,
1970
, “
The Size of Intracranial Saccular Aneurysms: An Autopsy Study
,”
J. Neurosurg.
,
33
(
4
), pp.
422
427
.10.3171/jns.1970.33.4.0422
18.
Juvela
,
S.
,
Porras
,
M.
, and
Heiskanen
,
O.
,
1993
, “
Natural History of Unruptured Intracranial Aneurysms: A Long-Term Follow-Up Study
,”
J. Neurosurg.
,
79
(
2
), pp.
174
182
.10.3171/jns.1993.79.2.0174
19.
Wiebers
,
D. O.
,
of Unruptured Intracranial Aneurysms Investigators, I. S
.,
2003
, “
Unruptured Intracranial Aneurysms: Natural History, Clinical Outcome, and Risks of Surgical and Endovascular Treatment
,”
Lancet
,
362
(
9378
), pp.
103
110
.10.1016/S0140-6736(03)13860-3
20.
Ujiie
,
H.
,
Tachi
,
H.
,
Hiramatsu
,
O.
,
Hazel
,
A. L.
,
Matsumoto
,
T.
,
Ogasawara
,
Y.
,
Nakajima
,
H.
,
Hori
,
T.
,
Takakura
,
K.
, and
Kajiya
,
F.
,
1999
, “
Effects of Size and Shape (Aspect Ratio) on the Hemodynamics of Saccular Aneurysms: A Possible Index for Surgical Treatment of Intracranial Aneurysms
,”
Neurosurgery
,
45
(
1
), pp.
119
130
.10.1097/00006123-199907000-00028
21.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
,
2004
, “
Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
264
273
.10.1023/B:ABME.0000012746.31343.92
22.
Raghavan
,
M. L.
,
Ma
,
B.
, and
Harbaugh
,
R. E.
,
2005
, “
Quantified Aneurysm Shape and Rupture Risk
,”
J. Neurosurg.
,
102
(
2
), pp.
355
362
.10.3171/jns.2005.102.2.0355
23.
Ferguson
,
G. G.
,
1972
, “
Physical Factors in the Initiation, Growth, and Rupture of Human Intracranial Saccular Aneurysms
,”
J. Neurosurg.
,
37
(
6
), pp.
666
677
.10.3171/jns.1972.37.6.0666
24.
Stehbens
,
W.
,
1974
, “
Flow Disturbances in Glass Models of Aneurysms at Low Reynolds Numbers
,”
Exp. Physiol.
,
59
(
2
), pp.
167
174
.10.1113/expphysiol.1974.sp002256
25.
Liou
,
T.-M.
, and
Chang
,
T.-W.
,
1993
, “
Flow Fields in a Simulated Axisymmetric Terminal Aneurysm With Symmetric and Asymmetric Outflows
,”
Exp. Thermal Fluid Sci.
,
7
(
4
), pp.
362
369
.10.1016/0894-1777(93)90059-R
26.
Budwig
,
R.
,
1994
, “
Refractive Index Matching Methods for Liquid Flow Investigations
,”
Exp. Fluids
,
17
(
5
), pp.
350
355
.10.1007/BF01874416
27.
Bai
,
K.
, and
Katz
,
J.
,
2014
, “
On the Refractive Index of Sodium Iodide Solutions for Index Matching in PIV
,”
Exp. Fluids
,
55
(
4
), p.
1704
.10.1007/s00348-014-1704-x
28.
Miller
,
P.
,
Danielson
,
K.
,
Moody
,
G.
,
Slifka
,
A.
,
Drexler
,
E.
, and
Hertzberg
,
J.
,
2006
, “
Matching Index of Refraction Using a Diethyl Phthalate/Ethanol Solution for In Vitro Cardiovascular Models
,”
Exp. Fluids
,
41
(
3
), pp.
375
381
.10.1007/s00348-006-0146-5
29.
Adrian
,
R. J.
,
1991
, “
Particle-Imaging Techniques for Experimental Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
261
304
.10.1146/annurev.fl.23.010191.001401
30.
Boillot
,
A.
, and
Prasad
,
A.
,
1996
, “
Optimization Procedure for Pulse Separation in Cross-Correlation PIV
,”
Exp. Fluids
,
21
(
2
), pp.
87
93
.10.1007/BF00193911
31.
Meinhart
,
C. D.
,
Wereley
,
S. T.
, and
Santiago
,
J. G.
,
2000
, “
A Piv Algorithm for Estimating Time-Averaged Velocity Fields
,”
ASME J. Fluids Eng.
,
122
(
2
), pp.
285
289
.10.1115/1.483256
32.
Drexler
,
D. J.
,
1984
, “
Steady Flow Through Several Aneurysm Models
,” Ph.D. thesis,
Worcester Polytechnic Institute
,
Worcester, MA
.
33.
Budwig
,
R.
,
Elger
,
D.
,
Hooper
,
H.
, and
Slippy
,
J.
,
1993
, “
Steady Flow in Abdominal Aortic Aneurysm Models
,”
ASME J. Biomech, Eng.
,
115
(
4A
), pp.
418
423
.10.1115/1.2895506
34.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R.
, and
Dewanjee
,
M.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.10.1115/1.2796008
35.
Fukushima
,
T.
,
Matsuzawa
,
T.
, and
Homma
,
T.
,
1989
, “
Visualization and Finite Element Analysis of Pulsatile Flow in Models of the Abdominal Aortic Aneurysm
,”
Biorheology
,
26
(
2
), pp.
109
130
.10.3233/BIR-1989-26203
36.
Egelhoff
,
C.
,
Budwig
,
R.
,
Elger
,
D.
,
Khraishi
,
T.
, and
Johansen
,
K.
,
1999
, “
Model Studies of the Flow in Abdominal Aortic Aneurysms During Resting and Exercise Conditions
,”
J. Biomech.
,
32
(
12
), pp.
1319
1329
.10.1016/S0021-9290(99)00134-7
37.
Taylor
,
T. W.
, and
Yamaguchi
,
T.
,
1994
, “
Three-Dimensional Simulation of Blood Flow in an Abdominal Aortic Aneurysm–Steady and Unsteady Flow Cases
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
89
97
.10.1115/1.2895709
38.
Gobin
,
Y.
,
Counord
,
J.
,
Flaud
,
P.
, and
Duffaux
,
J.
,
1994
, “
In Vitro Study of Haemodynamics in a Giant Saccular Aneurysm Model: Influence of Flow Dynamics in the Parent Vessel and Effects of Coil Embolisation
,”
Neuroradiology
,
36
(
7
), pp.
530
536
.10.1007/BF00593516
39.
Yu
,
S.
, and
Zhao
,
J.
,
1999
, “
A Steady Flow Analysis on the Stented and Non-Stented Sidewall Aneurysm Models
,”
Med. Eng. Phys.
,
21
(
3
), pp.
133
141
.10.1016/S1350-4533(99)00037-5
40.
Le
,
T. B.
,
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
Pulsatile Flow Effects on the Hemodynamics of Intracranial Aneurysms
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111009
.10.1115/1.4002702
41.
Bouillot
,
P.
,
Brina
,
O.
,
Ouared
,
R.
,
Lovblad
,
K.
,
Pereira
,
V. M.
, and
Farhat
,
M.
,
2014
, “
Multi-Time-Lag Piv Analysis of Steady and Pulsatile Flows in a Sidewall Aneurysm
,”
Exp. Fluids
,
55
(
6
), p.
1746
.10.1007/s00348-014-1746-0
42.
Yu
,
S.
, and
Zhao
,
J.
,
2000
, “
A Particle Image Velocimetry Study on the Pulsatile Flow Characteristics in Straight Tubes With an Asymmetric Bulge
,”
Proc. Inst. Mech. Eng., Part C
,
214
(
5
), pp.
655
671
.10.1243/0954406001523678
43.
Liou
,
T.-M.
, and
Li
,
Y.-C.
,
2008
, “
Effects of Stent Porosity on Hemodynamics in a Sidewall Aneurysm Model
,”
J. Biomech.
,
41
(
6
), pp.
1174
1183
.10.1016/j.jbiomech.2008.01.025
44.
Bouillot
,
P.
,
Brina
,
O.
,
Ouared
,
R.
,
Lovblad
,
K.-O.
,
Farhat
,
M.
, and
Pereira
,
V. M.
,
2014
, “
Particle Imaging Velocimetry Evaluation of Intracranial Stents in Sidewall Aneurysm: Hemodynamic Transition Related to the Stent Design
,”
PLoS One
,
9
(
12
), p.
e113762
.10.1371/journal.pone.0113762
45.
Bouillot
,
P.
,
Brina
,
O.
,
Ouared
,
R.
,
Lovblad
,
K.-O.
,
Farhat
,
M.
, and
Pereira
,
V. M.
,
2015
, “
Hemodynamic Transition Driven by Stent Porosity in Sidewall Aneurysms
,”
J. Biomech.
,
48
(
7
), pp.
1300
1309
.10.1016/j.jbiomech.2015.02.020
46.
Asgharzadeh
,
H.
, and
Borazjani
,
I.
,
2019
, “
A Non-Dimensional Parameter for Classification of the Flow in Intracranial Aneurysms. I. Simplified Geometries
,”
Phys. Fluids
,
31
(
3
), p.
031904
.10.1063/1.5033942
47.
Asgharzadeh
,
H.
,
Asadi
,
H.
,
Meng
,
H.
, and
Borazjani
,
I.
,
2019
, “
A Non-Dimensional Parameter for Classification of the Flow in Intracranial Aneurysms. II. Patient-Specific Geometries
,”
Phys. Fluids
,
31
(
3
), p.
031905
.10.1063/1.5081451
48.
Asgharzadeh
,
H.
, and
Borazjani
,
I.
,
2016
, “
Effects of Reynolds and Womersley Numbers on the Hemodynamics of Intracranial Aneurysms
,”
Comput. Math. Methods Med.
,
2016
, pp.
1
16
.10.1155/2016/7412926
49.
Scotti
,
C. M.
,
Shkolnik
,
A. D.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2005
, “
Fluid-Structure Interaction in Abdominal Aortic Aneurysms: Effects of Asymmetry and Wall Thickness
,”
Biomed. Eng. Online
,
4
(
1
), p.
64
.10.1186/1475-925X-4-64
50.
Valencia
,
A.
, and
Torres
,
F.
,
2017
, “
Effects of Hypertension and Pressure Gradient in a Human Cerebral Aneurysm Using Fluid Structure Interaction Simulations
,”
J. Mech. Med. Biol.
,
17
(
01
), p.
1750018
.10.1142/S021951941750018X
51.
Byrne
,
G.
,
Mut
,
F.
, and
Cebral
,
J.
,
2014
, “
Quantifying the Large-Scale Hemodynamics of Intracranial Aneurysms
,”
Am. J. Neuroradiol.
,
35
(
2
), pp.
333
338
.10.3174/ajnr.A3678
52.
Daroczy
,
L.
,
Abdelsamie
,
A.
,
Janiga
,
G.
, and
Thevenin
,
D.
,
2017
, “
State Detection and Hybrid Simulation of Biomedical Flows
,”
Tenth International Symposium on Turbulence and Shear Flow Phenomena
,
Begel House
,
Chicago, IL
, July 7–9, pp.
1
6
. http://www.tsfp-conference.org/proceedings/2017/2/280.pdf
53.
Janiga
,
G.
,
2019
, “
Quantitative Assessment of 4D Hemodynamics in Cerebral Aneurysms Using Proper Orthogonal Decomposition
,”
J. Biomech.
,
82
, pp.
80
86
.10.1016/j.jbiomech.2018.10.014
54.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Review Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
55.
Hessenthaler
,
A.
,
Gaddum
,
N.
,
Holub
,
O.
,
Sinkus
,
R.
,
Röhrle
,
O.
, and
Nordsletten
,
D.
,
2017
, “
Experiment for Validation of Fluid-Structure Interaction Models and Algorithms
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
9
), p.
e2848
.10.1002/cnm.2848
56.
Steiger
,
H.
,
Poll
,
A.
,
Liepsch
,
D.
, and
Reulen
,
H.-J.
,
1987
, “
Haemodynamic Stress in Lateral Saccular Aneurysms
,”
Acta Neurochir.
,
86
(
3–4
), pp.
98
105
.10.1007/BF01402292
57.
White
,
F. M.
, and
Corfield
,
I.
,
2006
,
Viscous Fluid Flow
, Vol.
3
,
McGraw-Hill
,
New York
.
58.
Liou
,
T.-M.
, and
Liou
,
S.-N.
,
1999
, “
A Review on In Vitro Studies of Hemodynamic Characteristics in Terminal and Lateral Aneurysm Models
,”
Proc. Natl. Sci. Council, Republic China Part B
,
23
(
4
), pp.
133
148
.https://europepmc.org/article/med/10518314
59.
Steiger
,
H. J.
,
Poll
,
A.
,
Liepsch
,
D.
, and
Reulen
,
H.-J.
,
1987
, “
Basic Flow Structure in Saccular Aneurysms: A Flow Visualization Study
,”
Heart Vessels
,
3
(
2
), pp.
55
65
.10.1007/BF02058520
60.
Lumley
,
J. L.
,
1967
, “
The Structure of Inhomogeneous Turbulent Flows
,” A. M. Yaglom, and V. I. Tatarski, eds., Atmospheric Turbulence and Wave Propagation, Nauka, Moscow, pp.
166
178
.
61.
Sirovich
,
L.
,
1987
, “
Turbulence and the Dynamics of Coherent Structures. I. Coherent Structures
,”
Q. Appl. Math.
,
45
(
3
), pp.
561
571
.10.1090/qam/910462
62.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
63.
Holmes
,
P.
,
Lumley
,
J. L.
,
Berkooz
,
G.
, and
Rowley
,
C. W.
,
2012
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
,
Cambridge University Press
,
Cambridge, UK
.10.1017/CBO9780511622700
64.
Durgesh
,
V.
, and
Naughton
,
J.
,
2010
, “
Multi-Time-Delay LSE-POD Complementary Approach Applied to Unsteady High-Reynolds-Number Near Wake Flow
,”
Exp. Fluids
,
49
(
3
), pp.
571
583
.10.1007/s00348-010-0821-4
65.
O'Brien
,
V.
,
1972
, “
Closed Streamlines Associated With Channel Flow Over a Cavity
,”
Phys. Fluids
,
15
(
12
), pp.
2089
2097
.10.1063/1.1693840
You do not currently have access to this content.