Abstract

Pulmonary hypertension (PH) is a chronic progressive disease diagnosed when the pressure in the main pulmonary artery, assessed by right heart catheterization (RHC), is greater than 25 mmHg. Changes in the pulmonary vasculature due to the high pressure yield an increase in the right ventricle (RV) afterload. This starts a remodeling process during which the ventricle exhibits changes in shape and eventually fails. RV models were obtained from the segmentation of cardiac magnetic resonance images at baseline and 1-year follow-up for a pilot study that involved 12 PH and 7 control subjects. The models were used to create surface meshes of the geometry and to compute the principal, mean, and Gaussian curvatures. Ten global curvature indices were calculated for each of the RV endocardial wall reconstructions at the end-diastolic volume (EDV) and end-systolic volume (ESV) phases of the cardiac cycle. Statistical analysis of the data was performed to discern if there are significant differences in the curvature indices between controls and the PH group, as well as between the baseline and follow-up phases for the PH subjects. Six curvature indices, namely, the Gaussian curvature at ESV, the mean curvature at EDV and ESV, the L2-norm of the mean curvature at ESV, and the L2-norm of the major principal curvature at EDV and ESV, were found to be significantly different between controls and PH subjects (p < 0.05). We infer that these geometry measures could be used as indicators of RV endocardial wall morphology changes. Two global parameters, the Gaussian and mean curvatures at ESV, showed significant changes at the one-year follow-up for the PH subjects (p < 0.05). The aforementioned geometry measures to assess changes in RV shape could be used as part of a noninvasive computational tool to aid clinicians in PH diagnostic and progression assessment, and to evaluate the effectiveness of treatment.

References

1.
Galiè
,
N.
,
Hoeper
,
M. M.
,
M. Torbicky, A
,
H.
,
Vachiery
,
J. L.
,
Barbera
,
J. A.
,
Beghetti
,
M.
,
Corris
,
P.
,
Gaine
,
S.
,
Gibbs
,
J. S.
,
Gomez-Sanchez
,
M. A.
,
Jondeau
,
G.
,
Klepetko
,
W.
,
Opitz
,
C.
,
Peacock
,
A.
,
Rubin
,
L.
,
Zellweger
,
M.
,
Simonneau
,
G.
, and
ESC Committee for Practice Guidelines (CPG)
,
2009
, “
Guidelines for the Diagnosis and Treatment of Pulmonary Hypertension. The Task Force on Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), Endorsed by the International Society of Heart and Lung Transplantation (ISHLT)
,”
Eur. Heart J.
,
30
, pp.
2493
2537
.10.1093/eurheartj/ehp297
2.
Addetia
,
K.
,
Maffessanti
,
F.
,
Muraru
,
D.
,
Singh
,
A.
,
Surkova
,
E.
,
Mor-Avi
,
V.
,
Badano
,
L. P.
, and
Lang
,
R. M.
,
2018
, “
Morphologic Analysis of the Normal Right Ventricle Using Three-Dimensional Echocardiography–Derived Curvature Indices
,”
J. Am. Soc. Echocardiogr.
,
31
(
5
), pp.
614
623
.10.1016/j.echo.2017.12.009
3.
Kang
,
D. K.
,
Thilo
,
C.
,
Schoepf
,
U. J.
,
Barraza
,
J. M.
, Jr.
,
Nance
,
J. W.
, Jr.
,
Bastarrika
,
G.
,
Abro
,
J. A.
,
Ravenel
,
J. G.
,
Costello
,
P.
, and
Goldhaber
,
S. Z.
,
2011
, “
CT Signs of Right Ventricular Dysfunction: Prognostic Role in Acute Pulmonary Embolism
,”
JACC Cardiovasc. Imaging
,
4
(
8
), pp.
841
849
.10.1016/j.jcmg.2011.04.013
4.
Maffessanti
,
F.
,
Lang
,
R. M.
,
Niel
,
J.
,
Steringer-Mascherbauer
,
R.
,
Caiani
,
E. G.
,
Nesser
,
H. J.
, and
Mor-Avi
,
V.
,
2011
, “
Three-Dimensional Analysis of Regional Left Ventricular Endocardial Curvature From Cardiac Magnetic Resonance Images
,”
Magn. Reson. Imaging
,
29
(
4
), pp.
516
524
.10.1016/j.mri.2010.11.002
5.
Reynertson
,
S. I.
,
Kundur
,
R.
,
Mullen
,
G. M.
,
Costanzo
,
M. R.
,
McKiernan
,
T. L.
, and
Louie
,
E. K.
,
1999
, “
Asymmetry of Right Ventricular Enlargement in Response to Tricuspid Regurgitation
,”
Circulation
,
100
(
5
), pp.
465
467
.10.1161/01.CIR.100.5.465
6.
Leary
,
P. J.
,
Kurtz
,
C. E.
,
Hough
,
C. L.
,
Waiss
,
M. P.
,
Ralph
,
D. D.
, and
Sheehan
,
F. H.
,
2012
, “
Three-Dimensional Analysis of Right Ventricular Shape and Function in Pulmonary Hypertension
,”
Pulm. Circ.
,
2
(
1
), pp.
34
40
.10.4103/2045-8932.94828
7.
Simmons
,
R. J.
,
2017
, “
Methods for Kinematic Analysis of the Right Ventricle
,” Masters thesis,
The University of Texas at Austin
,
Austin, TX
.
8.
Dawes
,
T.
,
De Marvao
,
A.
,
Shi
,
W.
,
Fletcher
,
T.
,
Watson
,
G.
,
Wharton
,
J.
,
Rhodes
,
C.
,
Howard
,
L.
,
Gibbs
,
J.
,
Rueckert
,
D.
,
Cook
,
S.
,
Wilkins
,
M.
, and
O'Regan
,
D.
,
2017
, “
Machine Learning of Three-Dimensional Right Ventricular Motion Enables Outcome Prediction in Pulmonary Hypertension: A Cardiac MR Imaging Study
,”
Radiology
,
283
(
2
), pp.
381
390
.10.1148/radiol.2016161315
9.
Sheehan
,
F.
,
Ge
,
S.
,
Vick
,
G.
,
Urnes
,
K.
,
Kerwin
,
W.
,
Bolson
,
E.
,
Chung
,
T.
,
Kovalchin
,
J.
,
Sahn
,
D.
,
Jerosch-Herold
,
M.
, and
Stolpen
,
A.
,
2008
, “
Three-Dimensional Shape Analysis of Right Ventricular Remodeling in Repaired Tetralogy of Fallot
,”
Am. J. Cardiol.
,
101
(
1
), pp.
107
113
.10.1016/j.amjcard.2007.07.080
10.
Wu
,
J.
,
Simon
,
M.
, and
Brigham
,
J.
,
2016
, “
A Comparative Analysis of Global Shape Analysis Methods for the Assessment of the Human Right Ventricle
,”
Comput. Methods Biomech. Biomed. Eng. Imaging Vis.
,
4
(
6
), pp.
327
343
.10.1080/21681163.2014.941442
11.
Lee
,
K.
,
Zhu
,
J.
,
Shum
,
J.
,
Zhang
,
Y.
,
Muluk
,
S.
,
Chandra
,
A.
,
Eskandari
,
M.
, and
Finol
,
E. A.
,
2013
, “
Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
562
576
.10.1007/s10439-012-0691-4
12.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
ASME J Biomech. Eng.
,
131
(
6
), p.
061015
.10.1115/1.3127256
13.
Ryan
,
T.
,
Petrovic
,
O.
,
Dillon
,
J. C.
,
Feigenbaum
,
H.
,
Conley
,
M. J.
, and
Armstrong
,
W. F.
,
1985
, “
An Echocardiographic Index for Separation of Right Ventricular Volume and Pressure Overload
,”
J. Am. Coll. Cardiol.
,
5
(
4
), pp.
918
927
.10.1016/S0735-1097(85)80433-2
14.
Addetia
,
K.
,
Maffessanti
,
F.
,
Yamat
,
M.
,
Weinert
,
L.
,
Narang
,
A.
,
Freed
,
B.
,
Mor-Avi
,
V.
, and
Lang
,
R.
,
2016
, “
Three-Dimensional Echocardiography-Based Analysis of Right Ventricular Shape in Pulmonary Arterial Hypertension
,”
Eur. Heart J. Cardiovasc. Imaging
,
17
(
5
), pp.
564
575
.10.1093/ehjci/jev171
15.
Sacks
,
M. S.
,
Chuong
,
C. J.
,
Templeton
,
G. H.
, and
Peshock
,
R.
,
1993
, “
In Vivo 3-D Reconstruction and Geometric Characterization of the Right Ventricle Free Wall
,”
Ann. Biomed. Eng.
,
21
(
3
), pp.
263
275
.10.1007/BF02368182
16.
Amaki
,
M.
,
Nakatani
,
S.
,
Kanzaki
,
H.
,
Kyotani
,
S.
,
Nakanishi
,
N.
,
Shigemasa
,
C.
,
Hisatome
,
I.
, and
Kitakaze
,
M.
,
2009
, “
Usefulness of Three-Dimensional Echocardiography in Assessing Right Ventricular Function in Patients With Primary Pulmonary Hypertension
,”
Hypertens. Res.
,
32
(
5
), pp.
419
422
.10.1038/hr.2009.20
17.
Boxt
,
L. M.
, and
Katz
,
J.
,
1993
, “
Magnetic Resonance Imaging for Quantification of Right Ventricular Volume in Patients With Pulmonary Hypertension
,”
J. Thorac. Imaging
,
8
(
2
), pp.
92
97
.10.1097/00005382-199321000-00002
18.
Mackey
,
E. S.
,
Sandler
,
M. P.
,
Campbell
,
R. M.
,
Graham
,
T. P.
,
Atkinson
,
J. B.
,
Price
,
R.
, and
Moreau
,
G. A.
,
1990
, “
Right Ventricular Myocardial Mass Quantification With Magnetic Resonance Imaging
,”
Am. J. Cardiol.
,
65
(
7
), pp.
529
532
.10.1016/0002-9149(90)90828-O
19.
Sheehan
,
F.
, and
Redington
,
A.
,
2008
, “
The Right Ventricle: Anatomy, Physiology and Clinical Imaging
,”
Heart
,
94
(
11
), pp.
1510
1515
.10.1136/hrt.2007.132779
20.
Torbicki
,
A.
,
2007
, “
Cardiac Magnetic Resonance in Pulmonary Hypertension: A Step in the Right Direction
,”
Eur. Heart J.
,
28
(
10
), pp.
1187
1189
.10.1093/eurheartj/ehm074
21.
Menon
,
P. G.
,
Adhypak
,
S. M.
,
Williams
,
R. B.
,
Doyle
,
M.
, and
Biederman
,
R. W.
,
2014
, “
Investigating Cardiac MRI Based Right Ventricular Contractility as a Novel Non-Invasive Metric of Pulmonary Arterial Pressure
,”
Clin. Med. Insights Cardiol.
,
8
(
Suppl. 1
), pp.
45
50
.10.4137/CMC.S15711
22.
Heiberg
,
E.
,
Sjögren
,
J.
,
Ugander
,
M.
,
Carlsson
,
M.
,
Engblom
,
H.
, and
Arheden
,
H.
,
2010
, “
Design and Validation of Segment—A Freely Available Software of Cardiovascular Image Analysis
,”
BME Med. Imaging
,
10
(
1
).10.1186/1471-2342-10-1
23.
Kazhdan
,
M.
,
Bolitho
,
M.
, and
Hoppe
,
H.
,
2006
, “
Poisson Surface Reconstruction
,”
Proceedings of the Fourth Eurographics Symposium on Geometry Processing
, Vol.
7
, Cagliari, Sardinia (Italy), June 26–28, pp.
61
70
. https://people.engr.tamu.edu/schaefer/teaching/689_Fall2006/poissonrecon.pdf
24.
Garimella
,
R. V.
, and
Swartz
,
B. K.
,
2003
, “
Curvature Estimation for Unstructured Triangulations of Surfaces
,” Los Alamos National Laboratory, Los Alamos, NM, Report No.
LA-UR-03-8240
. https://www.researchgate.net/publication/245825677_Curvature_Estimation_for_Unstructured_Triangulations_of_Surfaces
25.
Petijean
,
S.
,
2002
, “
A Survey of Methods for Recovering Quadrics in Triangle Meshes
,”
ACM Comput. Surv.
,
34
(
2
), pp.
211
262
.10.1145/508352.508354
26.
Lin
,
C. S.
,
1996
, “
Heron's Formula in 3-Dimensional Space
,”
Math. Gazette
,
80
(
488
), pp.
370
372
.10.2307/3619577
27.
Kheyfets
,
V.
,
Thirugnanasambandam
,
M.
,
Rios
,
L.
,
Evans
,
D.
,
Smith
,
T.
,
Schroeder
,
T.
,
Mueller
,
J.
,
Murali
,
S.
,
Lasorda
,
D.
,
Spotti
,
J.
, and
Finol
,
E.
,
2015
, “
The Role of Wall Shear Stress in the Assessment of Right Ventricle Hydraulic Workload
,”
Pulm. Circ.
,
5
(
1
), pp.
90
100
.10.1086/679703
28.
Bellofiore
,
A.
, and
Chesler
,
N.
,
2013
, “
Methods for Measuring Right Ventricular Function and Hemodynamic Coupling With the Pulmonary Vasculature
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1384
1398
.10.1007/s10439-013-0752-3
29.
Champion
,
H. C.
,
Michelakis
,
E. D.
, and
Hassoun
,
P.
,
2009
, “
Comprehensive Invasive and Noninvasive Approach to the Right Ventricle-Pulmonary Circulation Unit: State of the Art and Clinical Research Implications
,”
Circulation
,
120
(
11
), pp.
992
1007
.10.1161/CIRCULATIONAHA.106.674028
30.
Ma
,
B.
,
Harbaugh
,
R. E.
, and
Raghavan
,
M. L.
,
2004
, “
Three-Dimensional Geometrical Characterization of Cerebral Aneurysms
,”
Ann. Biomed. Eng.
,
32
(
2
), pp.
264
273
.10.1023/B:ABME.0000012746.31343.92
31.
Whitley
,
E.
, and
Ball
,
J.
,
2002
, “
Statistics Review 4: Sample Size Calculations
,”
Crit. Care
,
6
(
4
), pp.
335
341
.10.1186/cc1521
You do not currently have access to this content.