Abstract

The aim of this research was to analyze the impact of the human body position changes caused by propelling a wheelchair with the pushrim propulsion on the value of motion resistance force. The discussed research works are in progress; therefore, the presented results should be treated as preliminary. The research was carried out in the group of six volunteers propelling a wheelchair of which frame was inclined, in respect to the horizontal plane, under the angle of 0 deg, 7 deg, and 14 deg. The area of the position variability of the human body center of gravity (COG) and the coefficients of wheelchair rolling resistance have been determined. Based on the measurements conducted, rolling resistance force FT and motion resistance force FR have been defined for three values of frame inclination angle. The determined force of rolling resistance Ft depended on the location of the COG of the human body and the value of the coefficients of rolling resistance of the front and rear wheels of a wheelchair. This force was a component of the resistance to motion FR, which also took into account the influence of gravity resulting from the inclination of the wheelchair on an inclined plane. For the tested inclination angles relative to the horizontal plane, the rolling resistance force ranged from 9.82 N to 22.81 N. Analyzing the variability of the rolling resistance force FT, it was found that for the final phase of the driving motion, it increased by 36% for the inclination angle of 0 deg and 43% for the inclination angle of 7 deg. Its increase was 48% for the inclination angle of 14 deg in relation to the human body position for the beginning of the driving motion. In the case of measuring the value of the resistance to motion FR, it was observed that, depending on the angle of the incline of the wheelchair, it ranged from 14.69 N to 256.33 N. The measurements conducted enabled the derivation of an analytical model for determining rolling resistance force depending on the position of the human body COG and the wheelchair inclination angle. The conducted research demonstrated the impact of the COG position on the changes of motion resistance force, thus expanding the state of knowledge, introducing a new parameter which, like a surface type and wheel type, affects motion resistances.

References

1.
Boninger
,
M. L.
,
Cooper
,
R. A.
,
Baldwin
,
M. A.
,
Shimada
,
S. D.
, and
Koontz
,
A.
,
1999
, “
Wheelchair Pushrim Kinetics: Body Weight and Median Nerve Function
,”
Arch. Phys. Med. Rehabil.
,
80
(
8
), pp.
910
915
.10.1016/S0003-9993(99)90082-5
2.
Coutts
,
K. D.
,
1990
, “
Kinematics of Sport Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
,
27
(
1
), pp.
21
26
.10.1682/JRRD.1990.01.0021
3.
O'Connor
,
T. J.
,
Robertson
,
R. N.
, and
Cooper
,
R. A.
,
1998
, “
Three-Dimensional Kinematic Analysis and Physiologic Assessment of Racing Wheelchair Propulsion
,”
Adapted Phys. Act. Q.
,
15
(
1
), pp.
1
14
.10.1123/apaq.15.1.1
4.
Sauret
,
C.
,
Vaslin
,
P.
,
Dabonneville
,
M.
, and
Cid
,
M.
,
2007
, “
Drag Force Mechanical Power During a Propulsion Cycle on a Manual Wheelchair
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
Suppl. 1
), pp.
99
100
.10.1080/10255840701478885
5.
Sauret
,
C.
,
Vaslin
,
P.
,
Lavaste
,
F.
,
de Saint Remy
,
N.
, and
Cid
,
M.
,
2013
, “
Effects of User's Actions on Rolling Resistance and Wheelchair Stability During Handrim Wheelchair Propulsion in the Field
,”
Med. Eng. Phys.
,
35
(
3
), pp.
289
297
.10.1016/j.medengphy.2012.05.001
6.
Pałasz
,
B.
,
Waluś
,
K. J.
, and
Warguła
,
Ł.
,
2019
, “
The Determination of the Rolling Resistance Coefficient of a Passenger Vehicle With the Use of Selected Road Tests Methods
,”
MATEC Web of Conferences
, Rydzyna, Poland, Sept. 4–7, p.
04006
.10.1051/matecconf/201925404007
7.
Johnson
,
B. W.
, and
Aylor
,
J. H.
,
1985
, “
Dynamic Modeling of an Electric Wheelchair
,”
IEEE Trans. Ind. Appl.
,
IA-21
(
5
), pp.
1284
1293
.10.1109/TIA.1985.349556
8.
Wargula
,
Ł.
,
Wieczorek
,
B.
, and
Kukla
,
M.
,
2019
, “
The Determination of the Rolling Resistance Coefficient of Objects Equipped With the Wheels and Suspension System–Results of Preliminary Tests
,”
MATEC Web of Conferences
, Rydzyna, Poland, Sept. 4–7, p.
01005
.10.1051/matecconf/201925401005
9.
Hoffman
,
M. D.
,
Millet
,
G. Y.
,
Hoch
,
A. Z.
, and
Candau
,
R. B.
,
2003
, “
Assessment of Wheelchair Drag Resistance Using a Coasting Deceleration Technique
,”
Am. J. Phys. Med. Rehabil.
,
82
(
11
), pp.
880
889
.10.1097/01.PHM.0000091980.91666.58
10.
Warguła
,
Ł.
,
Kukla
,
M.
, and
Wieczorek
,
B.
,
2020
, “
The Impact of Wheelchairs Propulsion Support Systems on the Rolling Resistance Coefficient
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
776
, p.
012076
.10.1088/1757-899X/776/1/012076
11.
Kwarciak
,
A. M.
,
Yarossi
,
M.
,
Ramanujam
,
A.
,
Dyson-Hudson
,
T. A.
, and
Sisto
,
S. A.
,
2009
, “
Evaluation of Wheelchair Tire Rolling Resistance Using Dynamometer-Based Coast-Down Tests
,”
J. Rehabil. Res. Dev.
,
46
(
7
), pp.
931
938
.10.1682/JRRD.2008.10.0137
12.
Chua
,
J. J. C.
,
Fuss
,
F. K.
, and
Subic
,
A.
,
2011
, “
Non-Linear Rolling Friction of a Tyre-Caster System: Analysis of a Rugby Wheelchair
,”
Proc. Inst. Mech. Eng., Part C
,
225
(
4
), pp.
1015
1020
.10.1243/09544062JMES2485
13.
Chua
,
J. J.
,
Fuss
,
F. K.
, and
Subic
,
A.
,
2010
, “
Rolling Friction of a Rugby Wheelchair
,”
Procedia Eng.
,
2
(
2
), pp.
3071
3076
.10.1016/j.proeng.2010.04.113
14.
Sawatzky
,
B.
,
Kim
,
W.
, and
Denison
,
I.
,
2004
, “
The Ergonomics of Different Tyres and Tyre Pressure During Wheelchair Propulsion
,”
Ergonomics
,
47
(
14
), pp.
1475
1483
.10.1080/00140130412331290862
15.
Cowan
,
R.
,
Nash
,
M.
,
Collinger
,
J. L.
,
Koontz
,
A. M.
, and
Boninger
,
M. L.
,
2009
, “
Impact of Surface Type, Wheelchair Weight, and Axle Position on Wheelchair Propulsion by Novice Older Adults
,”
Arch. Phys. Med. Rehabil.
,
90
(
7
), pp.
1076
1083
.10.1016/j.apmr.2008.10.034
16.
Bascou
,
J.
,
Sauret
,
C.
,
Pillet
,
H.
,
Vaslin
,
P.
,
Thoreux
,
P.
, and
Lavaste
,
F.
,
2013
, “
A Method for the Field Assessment of Rolling Resistance Properties of Manual Wheelchairs
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
4
), pp.
381
391
.10.1080/10255842.2011.623673
17.
Sauret
,
C.
,
Bascou
,
J.
,
Rmy
,
N. D. S.
,
Pillet
,
H.
,
Vaslin
,
P.
, and
Lavaste
,
F.
,
2012
, “
Assessment of Field Rolling Resistance of Manual Wheelchairs
,”
J. Rehabil. Res. Dev.
,
49
(
1
), pp.
63
74
.10.1682/JRRD.2011.03.0050
18.
Eydieux
,
N.
,
Hybois
,
S.
,
Siegel
,
A.
,
Bascou
,
J.
,
Vaslin
,
P.
,
Pillet
,
H.
,
Fodé
,
P.
, and
Sauret
,
C.
,
2020
, “
Changesin Wheelchair Biomechanics Within the First 120 Minutes of Practice: Spatiotemporal Parameters, Handrim Forces, Motor Force, Rolling Resistance and Fore-Aft Stability
,”
Disability Rehabil.: Assistive Technol.
,
15
(
3
), pp.
305
313
.10.1080/17483107.2019.1571117
19.
Julien
,
M. C.
,
Morgan
,
K.
,
Stephens
,
C. L.
,
Standeven
,
J.
, and
Engsberg
,
J.
,
2014
, “
Trunk and Neck Kinematics During Overground Manual Wheelchair Propulsion in Persons With Tetraplegia
,”
Disability Rehabil.: Assistive Technol.
,
9
(
3
), pp.
213
218
.10.3109/17483107.2013.775362
20.
Warguła
,
Ł.
,
Wieczorek
,
B.
, and
Kukla
,
M.
,
2019
, “
Determining the Rolling Resistance Coefficient of Wheelchairs
,”
Autobusy–Technika, Eksploatacja, Systemy Transportowe
,
227
(
1–2
), pp.
364
367
.10.24136/atest.2019.067
21.
Warguła
,
Ł.
,
Kukla
,
M.
, and
Wieczorek
,
B.
,
2019
, “
Determination of the Rolling Resistance Coefficient of Pneumatic Wheel Systems
,”
Autobusy–Tech., Ekspl., Syst. Transportowe
,
20
(
1–2
), pp.
360
363
.10.24136/atest.2019.066
22.
Wieczorek
,
B.
, and
Warguła
,
Ł.
,
2019
, “
Problems of Dynamometer Construction for Wheelchairs and Simulation of Push Motion
,”
MATEC Web of Conferences
, Rydzyna, Poland, Sept. 4–7, p.
01006
.10.1051/matecconf/201925401006
23.
Wieczorek
,
B.
, and
Kukla
,
M.
,
2019
, “
Effects of the Performance Parameters of a Wheelchair on the Changes in the Position of the Centre of Gravity of the Human Body in Dynamic Condition
,”
PLoS One
,
14
(
12
), p.
e0226013
.10.1371/journal.pone.0226013
24.
Shimada
,
S. D.
,
Robertson
,
R. N.
,
Bonninger
,
M. L.
, and
Cooper
,
R. A.
,
1998
, “
Kinematic Characterization of Wheelchair Propulsion
,”
J. Rehabil. Res. Dev.
,
35
(
2
), pp.
210
218
.https://pubmed.ncbi.nlm.nih.gov/9651893/
25.
Vanlandewijck
,
Y.
,
Theisen
,
D.
, and
Daly
,
D.
,
2001
, “
Wheelchair Propulsion Biomechanics
,”
Sports Med.
,
31
(
5
), pp.
339
367
.10.2165/00007256-200131050-00005
26.
Palmer
,
C. E.
,
1944
, “
Studies of the Center of Gravity in the Human Body
,”
Child Develop.
,
15
(
2–3
), pp.
99
180
.10.1111/j.1467-8624.1944.tb05627.x
27.
Hay
,
J. G.
,
1973
, “
The Center of Gravity of the Human Body
,”
Kinesiology III
, pp.
20
44
.https://eric.ed.gov/?q=The+Center+of+Gravity+of+the+Human+Body&id=ED084218
28.
Wieczorek
,
B.
,
Górecki
,
J.
,
Kukla
,
M.
, and
Wojtokowiak
,
D.
,
2017
, “
The Analytical Method of Determining the Center of Gravity of a Person Propelling a Manual Wheelchair
,”
Procedia Eng.
,
177
, pp.
405
410
.10.1016/j.proeng.2017.02.237
29.
Grappe
,
F.
,
Candau
,
R.
,
Barbier
,
B.
,
Hoffman
,
M. D.
,
Belli
,
A.
, and
Rouillon
,
J. D.
,
1999
, “
Influence of Tyre Pressure and Vertical Load on Coefficient of Rolling Resistance and Simulated Cycling Performance
,”
Ergonomics
,
42
(
10
), pp.
1361
1371
.10.1080/001401399185009
30.
Dickey
,
C.
,
Higginbotham
,
G.
, and
Reese
,
N.
,
2018
, “
Exploring the Relationship of Rolling Resistance, Tire Type, and Surface in Wheelchair Rear Wheels
,” Interdisciplinary Mobility Lab, LeTourneau University, Longview, TX.https://www.semanticscholar.org/paper/1-Exploring-the-Relationship-of-Roll-ing-Resistance-Dickey-Higginbotham/94e94ada1e84136bf759ef76d563414900b2e5eb
31.
AnyBody Technology, 2020, “
AnyBody Modeling System,” AnyBody Technology, Aalborg, Denmark, accessed Dec.
28, 2020, https://www.anybodytech.com/
32.
Wieczorek
,
B.
,
Warguła
,
Ł.
, and
Rybarczyk
,
D.
,
2020
, “
Impact of a Hybrid Assisted Wheelchair Propulsion System on Motion Kinematics During Climbing Up a Slope
,”
Appl. Sci.
,
10
(
3
), p.
1025
.10.3390/app10031025
You do not currently have access to this content.