Abstract

Knee ligament length can be used to infer ligament recruitment during functional activities and subject-specific morphology affects the interplay between ligament recruitment and joint motion. This study presents an approach that estimated ligament fiber insertion-to-insertion lengths with wrapping around subject-specific osseous morphology (WraptMor). This represents an advancement over previous work that utilized surrogate geometry to approximate ligament interaction with bone surfaces. Additionally, the reactions each ligament imparted onto bones were calculated by assigning a force–length relationship (kinetic WraptMor model), which assumed that the insertion-to-insertion lengths were independent of the assigned properties. Confirmation of the approach included comparing WraptMor predicted insertion-to-insertion length and reactions with an equivalent displacement-controlled explicit finite element model. Both models evaluated 10 ligament bundles at 16 different joint positions, which were repeated for five different ligament prestrain values for a total of 80 simulations per bundle. The WraptMor and kinetic WraptMor models yielded length and reaction predictions that were similar to the equivalent finite element model. With a few exceptions, predicted ligament lengths and reactions agreed to within 0.1 mm and 2.0 N, respectively, across all tested joint positions and prestrain values. The primary source of discrepancy between the models appeared to be caused by artifacts in the finite element model. The result is a relatively efficient approach to estimate ligament lengths and reactions that include wrapping around knee-specific bone surfaces.

References

1.
Blankevoort
,
L.
,
Huiskes
,
R.
, and
de Lange
,
A.
,
1991
, “
Recruitment of Knee-Joint Ligaments
,”
ASME J. Biomech. Eng.
,
113
(
1
), pp.
94
103
.10.1115/1.2894090
2.
Amiri
,
S.
,
Cooke
,
D.
,
Kim
,
I. Y.
, and
Wyss
,
U.
,
2007
, “
Mechanics of the Passive Knee Joint. Part 2: Interaction Between the Ligaments and the Articular Surfaces in Guiding the Joint Motion
,”
Proc. Inst. Mech. Eng. Part H-J. Eng. Med.
,
221
(
8
), pp.
821
832
.10.1243/09544119JEIM181
3.
Belvedere
,
C.
,
Ensini
,
A.
,
Feliciangeli
,
A.
,
Cenni
,
F.
,
D'Angeli
,
V.
,
Giannini
,
S.
, and
Leardini
,
A.
,
2012
, “
Geometrical Changes of Knee Ligaments and Patellar Tendon During Passive Flexion
,”
J. Biomech.
,
45
(
11
), pp.
1886
1892
.10.1016/j.jbiomech.2012.05.029
4.
Park
,
S. E.
,
DeFrate
,
L. E.
,
Suggs
,
J. F.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2006
, “
Erratum to the Change in Length of the Medial and Lateral Collateral Ligaments During In Vivo Knee Flexion [the Knee 12 (2005) 377–382]
,”
Knee
,
13
(
1
), pp.
77
82
. Jan.,10.1016/j.knee.2004.12.012
5.
Liu
,
F.
,
Gadikota
,
H. R.
,
Kozánek
,
M.
,
Hosseini
,
A.
,
Yue
,
B.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2011
, “
In Vivo Length Patterns of the Medial Collateral Ligament During the Stance Phase of Gait
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
19
(
5
), pp.
719
727
.10.1007/s00167-010-1336-5
6.
Hosseini
,
A.
,
Qi
,
W.
,
Tsai
,
T.-Y.
,
Liu
,
Y.
,
Rubash
,
H.
, and
Li
,
G.
,
2015
, “
In Vivo Length Change Patterns of the Medial and Lateral Collateral Ligaments Along the Flexion Path of the Knee
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
23
(
10
), pp.
3055
3061
.10.1007/s00167-014-3306-9
7.
Tsai
,
T.-Y.
,
Liow
,
M. H. L.
,
Peng
,
Y.
,
Arauz
,
P.
,
Li
,
G.
, and
Kwon
,
Y.-M.
,
2018
, “
In-Vivo Elongation of Anterior and Posterior Cruciate Ligament in Bi-Cruciate Retaining Total Knee Arthroplasty
,”
J. Orthop. Res.
,
36
(
12
), pp.
3239
3246
.10.1002/jor.24132
8.
Hosseini Nasab
,
S. H.
,
Smith
,
C. R.
,
Schütz
,
P.
,
Postolka
,
B.
,
List
,
R.
, and
Taylor
,
W. R.
,
2019
, “
Elongation Patterns of the Collateral Ligaments After Total Knee Arthroplasty Are Dominated by the Knee Flexion Angle
,”
Front. Bioeng. Biotechnol.
,
7
, p.
323
.10.3389/fbioe.2019.00323
9.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.10.1115/1.2894883
10.
Pottenger
,
L. A.
,
Phillips
,
F. M.
, and
Draganich
,
L. F.
,
1990
, “
The Effect of Marginal Osteophytes on Reduction of Varus-Valgus Instability in Osteoarthritic Knees
,”
Arthritis Rheum.
,
33
(
6
), pp.
853
858
.10.1002/art.1780330612
11.
Zaylor
,
W.
,
Stulberg
,
B. N.
, and
Halloran
,
J. P.
,
2019
, “
Use of Distraction Loading to Estimate Subject-Specific Knee Ligament Slack Lengths
,”
J. Biomech.
,
92
, pp.
1
5
.10.1016/j.jbiomech.2019.04.040
12.
Baldwin
,
M.
,
Laz
,
P.
,
Stowe
,
J.
, and
Rullkoetter
,
P.
,
2009
, “
Efficient Probabilistic Representation of Tibiofemoral Soft Tissue Constraint
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
6
), pp.
651
659
.10.1080/10255840902822550
13.
Amiri
,
S.
,
Wilson
,
D. R.
,
Amiri
,
S.
, and
Wilson
,
D. R.
,
2012
, “
A Computational Modeling Approach for Investigating Soft Tissue Balancing in Bicruciate Retaining Knee Arthroplasty
,”
Comput. Math. Methods Med.
,
2012
, pp.
1
11
.10.1155/2012/652865
14.
Kang
,
K.-T.
,
Kim
,
S.-H.
,
Son
,
J.
,
Lee
,
Y. H.
,
Kim
,
S.
, and
Chun
,
H.-J.
,
2017
, “
Probabilistic Evaluation of the Material Properties of the In Vivo Subject-Specific Articular Surface Using a Computational Model
,”
J. Biomed. Mater. Res. Part B
,
105
(
6
), pp.
1390
1400
.10.1002/jbm.b.33666
15.
Bennetts
,
C.
,
Chokhandre
,
S.
,
Donnola
,
S.
,
Flask
,
A. C.
,
Bonner
,
T.
,
Colbrunn
,
R.
, and
Erdemir
,
A.
,
2015
, “
Open Knee(s): Magnetic Resonance Imaging for Specimen-Specific Next Generation Knee Models
,”
Summer Biomechanics, Bioengineering and Biotransport Conference
, Snowbird, UT, June 17–20, pp.
906
907
.https://archive.sb3c.org/2015-proceedings/
16.
Fedorov
,
A.
,
Beichel
,
R.
,
Kalpathy-Cramer
,
J.
,
Finet
,
J.
,
Fillion-Robin
,
J.-C.
,
Pujol
,
S.
,
Bauer
,
C.
,
Jennings
,
D.
,
Fennessy
,
F.
,
Sonka
,
M.
,
Buatti
,
J.
,
Aylward
,
S.
,
Miller
,
J. V.
,
Pieper
,
S.
, and
Kikinis
,
R.
,
2012
, “
3D Slicer as an Image Computing Platform for the Quantitative Imaging Network
,”
Magn. Resonance Imag.
,
30
(
9
), pp.
1323
1341
.10.1016/j.mri.2012.05.001
17.
SciPy 1.0 Contributors,
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
L.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
, and
van Mulbregt
,
P.
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
18.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
19.
Kia
,
M.
,
Schafer
,
K.
,
Lipman
,
J.
,
Cross
,
M.
,
Mayman
,
D.
,
Pearle
,
A.
,
Wickiewicz
,
T.
, and
Imhauser
,
C.
,
2016
, “
A Multibody Knee Model Corroborates Subject-Specific Experimental Measurements of Low Ligament Forces and Kinematic Coupling During Passive Flexion
,”
ASME J. Biomech. Eng.
,
138
(
5
), p.
051010
.10.1115/1.4032850
20.
Ewing
,
J. A.
,
Kaufman
,
M. K.
,
Hutter
,
E. E.
,
Granger
,
J. F.
,
Beal
,
M. D.
,
Piazza
,
S. J.
, and
Siston
,
R. A.
,
2016
, “
Estimating Patient-Specific Soft-Tissue Properties in a TKA Knee
,”
J. Orthop. Res.
,
34
(
3
), pp.
435
443
.10.1002/jor.23032
21.
Mommersteeg
,
T. J. A.
,
Huiskes
,
R.
,
Blankevoort
,
L.
,
Kooloos
,
J. G. M.
,
Kauer
,
J. M. G.
, and
Maathuis
,
P. G. M.
,
1996
, “
A Global Verification Study of a Quasi-Static Knee Model With Multi-Bundle Ligaments
,”
J. Biomech.
,
29
(
12
), pp.
1659
1664
.10.1016/S0021-9290(96)80022-4
22.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
23.
Smith
,
C. R.
,
Lenhart
,
R. L.
,
Kaiser
,
J.
,
Vignos
,
M. F.
, and
Thelen
,
D. G.
,
2015
, “
Influence of Ligament Properties on Tibiofemoral Mechanics in Walking
,”
J. Knee Surg.
,
29
(
02
), pp.
099
106
.10.1055/s-0035-1558858
You do not currently have access to this content.