Abstract

Myofibroblasts are responsible for wound healing and tissue repair across all organ systems. In periods of growth and disease, myofibroblasts can undergo a phenotypic transition characterized by an increase in extracellular matrix (ECM) deposition rate, changes in various protein expression (e.g., alpha-smooth muscle actin (αSMA)), and elevated contractility. Cell shape is known to correlate closely with stress-fiber geometry and function and is thus a critical feature of cell biophysical state. However, the relationship between myofibroblast shape and contraction is complex, even as well in regards to steady-state contractile level (basal tonus). At present, the relationship between myofibroblast shape and basal tonus in three-dimensional (3D) environments is poorly understood. Herein, we utilize the aortic valve interstitial cell (AVIC) as a representative myofibroblast to investigate the relationship between basal tonus and overall cell shape. AVICs were embedded within 3D poly(ethylene glycol) (PEG) hydrogels containing degradable peptide crosslinkers, adhesive peptide sequences, and submicron fluorescent microspheres to track the local displacement field. We then developed a methodology to evaluate the correlation between overall AVIC shape and basal tonus induced contraction. We computed a volume averaged stretch tensor U for the volume occupied by the AVIC, which had three distinct eigenvalues (λ1,2,3=1.08,0.99,and0.89), suggesting that AVIC shape is a result of anisotropic contraction. Furthermore, the direction of maximum contraction correlated closely with the longest axis of a bounding ellipsoid enclosing the AVIC. As gel-imbedded AVICs are known to be in a stable state by 3 days of incubation used herein, this finding suggests that the overall quiescent AVIC shape is driven by the underlying stress-fiber directional structure and potentially contraction level.

References

1.
Water
,
L. V. D.
,
Varney
,
S.
, and
Tomasek
,
J. J.
,
2013
, “
Mechanoregulation of the Myofibroblast in Wound Contraction, Scarring, and Fibrosis: Opportunities for New Therapeutic Intervention
,”
Adv. Wound Care
,
2
(
4
), pp.
122
141
.10.1089/wound.2012.0393
2.
Li
,
B.
, and
Wang
,
J. H.
,
2011
, “
Fibroblasts and Myofibroblasts in Wound Healing: Force Generation and Measurement
,”
J. Tissue Viability
,
20
(
4
), pp.
108
120
.10.1016/j.jtv.2009.11.004
3.
Boswell
,
C. A.
,
Joris
,
I.
, and
Majno
,
G.
,
1992
, “
The Concept of Cellular Tone: Reflections on the Endothelium, Fibroblasts, and Smooth Muscle Cells
,”
Perspect. Biol. Med.
,
36
(
1
), pp.
79
86
.10.1353/pbm.1993.0008
4.
Merryman
,
W. D.
,
Huang
,
H. Y. S.
,
Schoen
,
F. J.
, and
Sacks
,
M. S.
,
2006
, “
The Effects of Cellular Contraction on Aortic Valve Leaflet Flexural Stiffness
,”
J. Biomech.
,
39
(
1
), pp.
88
96
.10.1016/j.jbiomech.2004.11.008
5.
Kershaw
,
J. D.
,
Misfeld
,
M.
,
Sievers
,
H. H.
,
Yacoub
,
M. H.
, and
Chester
,
A. H.
,
2004
, “
Specific Regional and Directional Contractile Responses of Aortic Cusp Tissue
,”
J. Heart Valve Dis.
,
13
(
5
), pp.
798
803
. https://www.researchgate.net/profile/Adrian-Chester/publication/8243281_Specific_regional_and_directional_contractile_responses_of_aortic_cusp_tissue/links/0deec52d3ad9bb0f7a000000/Specific-regional-and-directional-contractile-responses-of-aortic-cusp-tissue.pdf
6.
Cirka
,
H.
,
Monterosso
,
M.
,
Diamantides
,
N.
,
Favreau
,
J.
,
Wen
,
Q.
, and
Billiar
,
K.
,
2016
, “
Active Traction Force Response to Long-Term Cyclic Stretch Is Dependent on Cell Pre-Stress
,”
Biophys. J.
,
110
(
8
), pp.
1845
1857
.10.1016/j.bpj.2016.02.036
7.
Lam
,
N. T.
,
Muldoon
,
T. J.
,
Quinn
,
K. P.
,
Rajaram
,
N.
, and
Balachandran
,
K.
,
2016
, “
Valve Interstitial Cell Contractile Strength and Metabolic State Are Dependent on Its Shape
,”
Integr. Biol.
,
8
(
10
), pp.
1079
1089
.10.1039/C6IB00120C
8.
Tandon
,
I.
,
Razavi
,
A.
,
Ravishankar
,
P.
,
Walker
,
A.
,
Sturdivant
,
N. M.
,
Lam
,
N. T.
,
Wolchok
,
J. C.
, and
Balachandran
,
K.
,
2016
, “
Valve Interstitial Cell Shape Modulates Cell Contractility Independent of Cell Phenotype
,”
J. Biomech.
,
49
(
14
), pp.
3289
3297
.10.1016/j.jbiomech.2016.08.013
9.
Calizo
,
R. C.
,
Bell
,
M. K.
,
Ron
,
A.
,
Hu
,
M.
,
Bhattacharya
,
S.
,
Wong
,
N. J.
,
Janssen
,
W.
,
Perumal
,
G.
,
Pederson
,
P.
,
Scarlata
,
S.
,
Hone
,
J.
,
Azeloglu
,
E. U.
,
Rangamani
,
P.
, and
Iyengar
,
R.
,
2020
, “
Cell Shape Regulates Subcellular Organelle Location to Control Early Ca2+ Signal Dynamics in Vascular Smooth Muscle Cells
,”
Sci. Rep.
,
10
(
1
), p.
17866
.10.1038/s41598-020-74700-x
10.
Esfahani
,
P. H.
, and
Knoll
,
R.
,
2020
, “
Cell Shape: Effects on Gene Expression and Signaling
,”
Biophys. Rev.
,
12
(
4
), pp.
895
901
.10.1007/s12551-020-00722-4
11.
Haupt
,
A.
, and
Minc
,
N.
,
2018
, “
How Cells Sense Their Own Shape—Mechanisms to Probe Cell Geometry and Their Implications in Cellular Organization and Function
,”
J. Cell Sci.
,
131
(
6
), p.
jcs214015
.10.1242/jcs.214015
12.
Rangamani
,
P.
,
Lipshtat
,
A.
,
Azeloglu
,
E. U.
,
Calizo
,
R. C.
,
Hu
,
M.
,
Ghassemi
,
S.
,
Hone
,
J.
,
Scarlata
,
S.
,
Neves
,
S. R.
, and
Iyengar
,
R.
,
2013
, “
Decoding Information in Cell Shape
,”
Cell
,
154
(
6
), pp.
1356
1369
.10.1016/j.cell.2013.08.026
13.
Townley
,
W. A.
,
Baker
,
R.
,
Sheppard
,
N.
, and
Grobbelaar
,
A. O.
,
2006
, “
Dupuytren's Contracture Unfolded
,”
BMJ
,
332
(
7538
), pp.
397
400
.10.1136/bmj.332.7538.397
14.
Khang
,
A.
,
Rodriguez
,
A. G.
,
Schroeder
,
M. E.
,
Sansom
,
J.
,
Lejeune
,
E.
,
Anseth
,
K. S.
, and
Sacks
,
M. S.
,
2019
, “
Quantifying Heart Valve Interstitial Cell Contractile State Using Highly Tunable Poly(Ethylene Glycol) Hydrogels
,”
Acta Biomater.
,
96
, pp.
354
367
.10.1016/j.actbio.2019.07.010
15.
Benton
,
J. A.
,
Fairbanks
,
B. D.
, and
Anseth
,
K. S.
,
2009
, “
Characterization of Valvular Interstitial Cell Function in Three Dimensional Matrix Metalloproteinase Degradable PEG Hydrogels
,”
Biomaterials
,
30
(
34
), pp.
6593
6603
.10.1016/j.biomaterials.2009.08.031
16.
Mabry
,
K. M.
,
Lawrence
,
R. L.
, and
Anseth
,
K. S.
,
2015
, “
Dynamic Stiffening of Poly(Ethylene Glycol)-Based Hydrogels to Direct Valvular Interstitial Cell Phenotype in a Three-Dimensional Environment
,”
Biomaterials
,
49
, pp.
47
56
.10.1016/j.biomaterials.2015.01.047
17.
Tibbitt
,
M. W.
, and
Anseth
,
K. S.
,
2009
, “
Hydrogels as Extracellular Matrix Mimics for 3D Cell Culture
,”
Biotechnol. Bioeng.
,
103
(
4
), pp.
655
663
.10.1002/bit.22361
18.
Caliari
,
S. R.
, and
Burdick
,
J. A.
,
2016
, “
A Practical Guide to Hydrogels for Cell Culture
,”
Nat. Methods
,
13
(
5
), pp.
405
414
.10.1038/nmeth.3839
19.
Gould
,
S. T.
,
Darling
,
N. J.
, and
Anseth
,
K. S.
,
2012
, “
Small Peptide Functionalized Thiol–Ene Hydrogels as Culture Substrates for Understanding Valvular Interstitial Cell Activation and de Novo Tissue Deposition
,”
Acta Biomater.
,
8
(
9
), pp.
3201
3209
.10.1016/j.actbio.2012.05.009
20.
Mabry
,
K. M.
,
Schroeder
,
M. E.
,
Payne
,
S. Z.
, and
Anseth
,
K. S.
,
2016
, “
Three-Dimensional Highthroughput Cell Encapsulation Platform to Study Changes in Cell-Matrix Interactions
,”
Appl. Mater. Interfaces
,
8
(
34
), pp.
21914
21922
.10.1021/acsami.5b11359
21.
Mabry
,
K. M.
,
Payne
,
S. Z.
, and
Anseth
,
K. S.
,
2016
, “
Microarray Analyses to Quantify Advantages of 2D and 3D Hydrogel Culture Systems in Maintaining the Native Valvular Interstitial Cell Phenotype
,”
Biomaterials
,
74
, pp.
31
41
.10.1016/j.biomaterials.2015.09.035
22.
Legant
,
W. R.
,
Miller
,
J. S.
,
Blakely
,
B. L.
,
Cohen
,
D. M.
,
Genin
,
G. M.
, and
Chen
,
C. S.
,
2010
, “
Measurement of Mechanical Tractions Exerted by Cells in Three-Dimensional Matrices
,”
Nat. Methods
,
7
(
12
), pp.
969
971
.10.1038/nmeth.1531
23.
Koch
,
T. M.
,
Münster
,
S.
,
Bonakdar
,
N.
,
Butler
,
J. P.
, and
Fabry
,
B.
,
2012
, “
3D Traction Forces in Cancer Cell Invasion
,”
PLoS ONE
,
7
(
3
), p.
e33476
.10.1371/journal.pone.0033476
24.
Johnson
,
C.
,
Hanson
,
M.
, and
Helgeson
,
S.
,
1987
, “
Porcine Cardiac Valvular Subendothelial Cells in Culture: Cell Isolation and Growth Characteristics
,”
J. Mol. Cell. Cardiol.
,
19
(
12
), pp.
1185
1193
.10.1016/S0022-2828(87)80529-1
25.
Lejeune
,
E.
,
Khang
,
A.
,
Sansom
,
J.
, and
Sacks
,
M. S.
,
2020
, “
FM-Track: A Fiducial Marker Tracking Software for Studying Cell Mechanics in a Three-Dimensional Environment
,”
SoftwareX
,
11
, p.
100417
.10.1016/j.softx.2020.100417
26.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
, pp.
2825
2830
.https://jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
27.
van der Walt
,
S.
,
Schönberger
,
J. L.
,
Nunez-Iglesias
,
J.
,
Boulogne
,
F.
,
Warner
,
J. D.
,
Yager
,
N.
,
Gouillart
,
E.
, and
Yu
,
T.
,
2014
, “
Scikit-Image: Image Processing in Python
,”
PeerJ
,
2
, p.
e453
.10.7717/peerj.453
28.
Moshtagh
,
N.
,
2021
, “
Minimum Volume Enclosing Ellipsoid
,” MATLAB Central File Exchange, accessed Apr. 24, 2021, https://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid
29.
Khachiyan
,
L.
,
1980
, “
Polynomial Algorithms in Linear Programming
,”
USSR Comput. Math. Math. Phys.
,
20
(
1
), pp.
53
72
.10.1016/0041-5553(80)90061-0
30.
Stout
,
D. A.
,
Bar-Kochba
,
E.
,
Estrada
,
J. B.
,
Toyjanova
,
J.
,
Kesari
,
H.
,
Reichner
,
J. S.
, and
Franck
,
C.
,
2016
, “
Mean Deformation Metrics for Quantifying 3D Cell–Matrix Interactions Without Requiring Information About Matrix Material Properties
,”
Proc. Natl. Acad. Sci.
,
113
(
11
), pp.
2898
2903
.10.1073/pnas.1510935113
31.
Ye
,
G. J. C.
,
Aratyn-Schaus
,
Y.
,
Nesmith
,
A. P.
,
Pasqualini
,
F. S.
,
Alford
,
P. W.
, and
Parker
,
K. K.
,
2014
, “
The Contractile Strength of Vascular Smooth Muscle Myocytes Is Shape Dependent
,”
Integr. Biol.
,
6
(
2
), pp.
152
163
.10.1039/c3ib40230d
32.
Alford
,
P. W.
,
Nesmith
,
A. P.
,
Seywerd
,
J. N.
,
Grosberg
,
A.
, and
Parker
,
K. K.
,
2011
, “
Vascular Smooth Muscle Contractility Depends on Cell Shape
,”
Integr. Biol.
,
3
(
11
), pp.
1063
1070
.10.1039/c1ib00061f
33.
Zemel
,
A.
,
Rehfeldt
,
F.
,
Brown
,
A. E. X.
,
Discher
,
D. E.
, and
Safran
,
S. A.
,
2010
, “
Cell Shape, Spreading Symmetry, and the Polarization of Stress-Fibers in Cells
,”
J. Phys.: Condens. Matter
,
22
(
19
), p.
194110
.10.1088/0953-8984/22/19/194110
34.
Burnette
,
D. T.
,
Shao
,
L.
,
Ott
,
C.
,
Pasapera
,
A. M.
,
Fischer
,
R. S.
,
Baird
,
M. A.
,
Loughian
,
C. D.
,
Delanoe-Ayari
,
H.
,
Paszek
,
M. J.
,
Davidson
,
M. W.
,
Betzig
,
E.
, and
Lippincott-Schwartz
,
J.
,
2014
, “
A Contractile and Counterbalancing Adhesion System Controls the 3D Shape of Crawling Cells
,”
J. Cell Biol.
,
205
(
1
), pp.
83
96
.10.1083/jcb.201311104
35.
Sakamoto
,
Y.
,
Buchanan
,
R. M.
,
Sanchez-Adams
,
J.
,
Guilak
,
F.
, and
Sacks
,
M. S.
,
2017
, “
On the Functional Role of Valve Interstitial Cell Stress Fibers: A Continuum Modeling Approach
,”
ASME J. Biomech. Eng.
,
139
(
2
), p.
021007
.10.1115/1.4035557
36.
Sakamoto
,
Y.
,
Buchanan
,
R. M.
, and
Sacks
,
M. S.
,
2016
, “
On Intrinsic Stress Fiber Contractile Forces in Semilunar Heart Valve Interstitial Cells Using a Continuum Mixture Model
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
244
258
.10.1016/j.jmbbm.2015.09.027
37.
Baker
,
B. M.
, and
Chen
,
C. S.
,
2012
, “
Deconstructing the Third Dimension—How 3D Culture Microenvironments Alter Cellular Cues
,”
J. Cell Sci.
,
125
(
13
), pp.
3015
3024
.10.1242/jcs.079509
38.
Haastert
,
P. J. V.
,
2010
, “
A Stochastic Model for Chemotaxis Based on the Ordered Extension of Pseudopods
,”
Biophys. J.
,
99
(
10
), pp.
3345
3354
.10.1016/j.bpj.2010.09.042
39.
Grazi
,
E.
,
1997
, “
What Is the Diameter of the Actin Filament?
,”
FEBS Lett.
,
405
(
3
), pp.
249
252
.10.1016/S0014-5793(97)00214-7
You do not currently have access to this content.