Abstract

Tibia stress fractures are prevalent during high-intensity training, yet a mechanistic model linking longitudinal training intensity, bone health, and long-term injury risk has yet to be demonstrated. The objective of this study was to develop and validate a multiscale model of gross and tissue level loading on the tibia including bone remodeling on a timescale of week. Peak tensile tibial strain (3517 μstrain) during 4 m/s running was below injury thresholds, and the peak anteromedial tibial strain (1248 μstrain) was 0.17 standard deviations away from the mean of reported literature values. An initial study isolated the effects of cortical density and stiffness on tibial strain during a simulated eight week training period. Tibial strains and cortical microcracking correlated with initial cortical modulus, with all simulations presenting peak anteromedial tensile strains (1047–1600 μstrain) near day 11. Average cortical densities decreased by 7–8% of their nominal value by day 11, but the overall density change was <2% by the end of the simulated training period, in line with reported results. This study demonstrates the benefits of multiscale models for investigating stress fracture risk and indicates that peak tibial strain, and thus injury risk, may increase early in a high intensity training program. Future studies could optimize training volume and recovery time to reduce injury risk during the most vulnerable training periods.

References

1.
Brukner
,
P.
,
Bradshaw
,
C.
,
Khan
,
K.
,
White
,
S.
, and
Crossley
,
K.
,
1996
, “
Stress Fractures: A Review of 180 Cases
,”
Clin. J. Sport Med.
,
6
(
2
), pp.
85
89
.10.1097/00042752-199604000-00004
2.
Yagi
,
S.
,
Muneta
,
T.
, and
Sekiya
,
I.
,
2013
, “
Incidence and Risk Factors for Medial Tibial Stress Syndrome and Tibial Stress Fracture in High School Runners
,”
Knee Surg., Sport. Traumatol. Arthrosc.
,
21
(
3
), pp.
556
563
.10.1007/s00167-012-2160-x
3.
Milgrom
,
C.
,
Gilad
,
M.
,
Simkin
,
A.
,
Rand
,
N.
,
Kedem
,
R.
,
Kashtan
,
H.
,
Stein
,
M.
,
Gomori
,
M.
, and
Gildadi
,
M.
,
1989
, “
The Area Moment of Inertia of the Tibia: A Risk
,”
J. Biomech.
,
22
(
11–12
), pp.
1243
1248
.10.1016/0021-9290(89)90226-1
4.
Wentz
,
L.
,
Liu
,
P.-Y.
,
Haymes
,
E.
, and
Ilich
,
J. Z.
,
2011
, “
Females Have a Greater Incidence of Stress Fractures Than Males in Both Military and Athletic Populations: A Systemic Review
,”
Mil. Med.
,
176
(
4
), pp.
420
430
.10.7205/MILMED-D-10-00322
5.
Matheson
,
G. O.
,
Clement
,
D. B.
,
Mckenzie
,
D. C.
,
Taunton
,
J. E.
,
Lloyd-Smith
,
D. R.
, and
Macintyre
,
J. G.
,
1987
, “
Stress Fractures in Athletes: A Study of 320 Cases
,”
Am. J. Sports Med.
,
15
(
1
), pp.
46
58
.10.1177/036354658701500107
6.
James
,
S.
,
Bates
,
B.
, and
Osternig
,
L.
,
1978
, “
Injuries to Runners
,”
Am. J. Sports Med.
,
6
(
2
), pp.
40
50
.10.1177/036354657800600202
7.
Clement
,
D. B.
,
Taunton
,
J. E.
,
Smart
,
G. W.
, and
McNicol
,
K.
,
1981
, “
A Survey of Overuse Running Injuries
,”
Phys. Sportsmed.
,
9
(
5
), pp.
47
58
.10.1080/00913847.1981.11711077
8.
Kaufman
,
K. R.
,
Brodine
,
S.
, and
Shaffer
,
R.
,
2000
, “
Military Training-Related Injuries: Surveillance, Research, and Prevention
,”
Am. J. Prev. Med.
,
18
(
1
), pp.
54
63
.10.1016/S0749-3797(00)00114-8
9.
Jensen
,
A. E.
,
Laird
,
M.
,
Jameson
,
J. T.
, and
Kelly
,
K. R.
,
2019
, “
Prevalence of Musculoskeletal Injuries Sustained During Marine Corps Recruit Training
,”
Mil. Med.
,
184
(
Suppl_1
), pp.
511
520
.10.1093/milmed/usy387
10.
Milgrom
,
C.
,
Giladi
,
M.
,
Stein
,
M.
,
Kashtan
,
H.
,
Margulies
,
J. Y.
,
Chisin
,
R.
,
Steinberg
,
R.
, and
Aharonson
,
Z.
,
1985
, “
Stress Fractures in Military Recruits. A Prospective Study Showing an Unusually High Incidence
,”
J. bone Jt. Surg.
,
67-B
(
5
), pp.
732
735
.
11.
Clifford
,
B. E.
, and
James
,
S. L.
,
1974
, “
Injuries to Runners
,”
J. Sports Med.
,
2
(
4
), pp.
189
198
.10.1177/036354657400200402
12.
Hadjidakis
,
D. J.
, and
Androulakis
,
I. I.
,
2006
, “
Bone Remodeling
,”
Ann. N. Y. Acad. Sci.
,
1092
(
1
), pp.
385
396
.10.1196/annals.1365.035
13.
Burr
,
D. B.
,
Martin
,
R. B.
,
Schaffler
,
M. B.
, and
Radin
,
E. L.
,
1985
, “
Bone Remodeling in Response to In Vivo Fatigue Microdamage
,”
J. Biomech.
,
18
(
3
), pp.
189
200
.10.1016/0021-9290(85)90204-0
14.
Lanyon
,
L. E.
,
1993
, “
Osteocytes, Strain Detection, Bone Modeling and Remodeling
,”
Calcif. Tissue Int.
,
53
(
1 Suppl
), pp.
102
107
.https://rdcu.be/cKOT9
15.
Pohl
,
M. B.
,
Mullineaux
,
D. R.
,
Milner
,
C. E.
,
Hamill
,
J.
, and
Davis
,
I. S.
,
2008
, “
Biomechanical Predictors of Retrospective Tibial Stress Fractures in Runners
,”
J. Biomech.
,
41
(
6
), pp.
1160
1165
.10.1016/j.jbiomech.2008.02.001
16.
Milgrom
,
C.
,
Giladi
,
M.
,
Stein
,
M.
,
Kashtan
,
H.
,
Margulies
,
J. Y.
,
Chisin
,
R.
,
Steinberg
,
R.
, and
Aharonson
,
Z.
,
1985
, “
Stress Fractures in Military Recruits. A Prospective Study Showing an Unusually High Incidence
,”
J. Bone Jt. Surg. Ser. B
,
67-B
(
5
), pp.
732
735
.10.1302/0301-620X.67B5.4055871
17.
Burr
,
D. B.
,
Milgrom
,
C.
,
Fyhrie
,
D.
,
Forwood
,
M.
,
Nyska
,
M.
,
Finestone
,
A.
,
Hoshaw
,
S.
,
Saiag
,
E.
, and
Simkin
,
A.
,
1996
, “
In Vivo Measurement of Human Tibial Strains During Vigorous Activity
,”
Bone
,
18
(
5
), pp.
405
410
.10.1016/8756-3282(96)00028-2
18.
Lanyon
,
L. E.
,
Hampson
,
W. G. J.
,
Goodship
,
A. E.
, and
Shah
,
J. S.
,
1975
, “
Bone Deformation Recorded In Vivo From Strain Gauges Attached to the Human Tibial Shaft
,”
Acta Orthop.
,
46
(
2
), pp.
256
268
.10.3109/17453677508989216
19.
Haider
,
I. T.
,
Baggaley
,
M.
, and
Brent Edwards
,
W.
,
2020
, “
Subject-Specific Finite Element Models of the Tibia With Realistic Boundary Conditions Predict Bending Deformations Consistent With In Vivo Measurement
,”
ASME J. Biomech. Eng.
,
142
(
2
), p.
021010
.10.1115/1.4044034
20.
Barkaoui
,
A.
,
Ben Kahla
,
R.
,
Merzouki
,
T.
, and
Hambli
,
R.
,
2017
, “
Age and Gender Effects on Bone Mass Density Variation: Finite Elements Simulation
,”
Biomech. Model. Mechanobiol.
,
16
(
2
), pp.
521
535
.10.1007/s10237-016-0834-x
21.
Barkaoui
,
A.
,
Kahla
,
B.
,
Merzouki
,
T.
, and
Hambli
,
R.
,
2019
, “
Numerical Simulation of Apparent Density Evolution of Trabecular Bone Under Fatigue Loading: Effect of Bone Initial Properties
,”
J. Mech. Med. Biol.
,
19
(
5
), p.
1950041
.10.1142/S0219519419500416
22.
Komarova
,
S. V.
,
Smith
,
R. J.
,
Dixon
,
S. J.
,
Sims
,
S. M.
, and
Wahl
,
L. M.
,
2003
, “
Mathematical Model Predicts a Critical Role for Osteoclast Autocrine Regulation in the Control of Bone Remodeling
,”
Bone
,
33
(
2
), pp.
206
215
.10.1016/S8756-3282(03)00157-1
23.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
24.
Rajagopal
,
A.
,
Dembia
,
C. L.
,
Demers
,
M. S.
,
Delp
,
D. D.
,
Hicks
,
J. L.
, and
Delp
,
S. L.
,
2016
, “
Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait
,”
IEEE Trans. Biomed. Eng.
,
63
(
10
), pp.
2068
2079
.10.1109/TBME.2016.2586891
25.
Steele
,
K. M.
,
DeMers
,
M. S.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2012
, “
Compressive Tibiofemoral Force During Crouch Gait
,”
Gait Posture
,
35
(
4
), pp.
556
560
.10.1016/j.gaitpost.2011.11.023
26.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
,
2003
, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
,
36
(
3
), pp.
321
328
.10.1016/S0021-9290(02)00432-3
27.
Van Arkel
,
R. J.
,
Modenese
,
L.
,
Phillips
,
A. T. M.
, and
Jeffers
,
J. R. T.
,
2013
, “
Hip Abduction Can Prevent Posterior Edge Loading of Hip Replacements
,”
J. Orthop. Res.
,
31
(
8
), pp.
1172
1179
.10.1002/jor.22364
28.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
,
D'Lima
,
D. D.
,
Cristofolini
,
L.
,
Witte
,
H.
,
Schmid
,
O.
, and
Stokes
,
I.
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion—Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
29.
Ntaroiu
,
C. O. D. U.
,
Ue
,
N. E. N. G. Y.
, and
Hin
,
J. A. S.
,
2013
, “
A Finite Element Model of the Lower Limb for Simulating Automotive Impacts
,”
Ann. Biomed. E
,
41
(
3
), pp.
513
526
.10.1007/s10439-012-0687-0
30.
Butler
,
R. J.
,
Marchesi
,
S.
,
Royer
,
T.
, and
Davis
,
I. S.
,
2007
, “
The Effect of a Subject-Specific Amount of Lateral Wedge on Knee
,”
J. Orthop. Res.
,
25
(
9
), pp.
1121
1127
.10.1002/jor.20423
31.
Hambli
,
R.
,
Boughattas
,
M. H.
,
Daniel
,
J. L.
, and
Kourta
,
A.
,
2016
, “
Prediction of Denosumab Effects on Bone Remodeling: A Combined Pharmacokinetics and Finite Element Modeling
,”
J. Mech. Behav. Biomed. Mater.
,
60
, pp.
492
504
.10.1016/j.jmbbm.2016.03.010
32.
Tozzi
,
G.
,
Staines
,
K. A.
,
Adams
,
G. J.
,
Cook
,
R. B.
,
Hutchinson
,
J. R.
, and
Zioupos
,
P.
,
2018
, “
Bone Apparent and Material Densities Examined by Cone Beam Computed Tomography and the Archimedes Technique: Comparison of the Two Methods and Their Results
,”
Front. Mech. Eng.
, 3, p.
23
.10.3389/fmech.2017.00023
33.
Schoell
,
S. L.
,
Weaver
,
A. A.
,
Beavers
,
D. P.
,
Lenchik
,
L.
, and
Marsh
,
A. P.
,
2018
, “
Development of Subject-Specific Proximal Femur Finite Element Models of Older Adults With Obesity to Evaluate the Effects of Weight Loss on Bone Strength
,”
J. Osteopor. Phys. Act
,
6
(
1
), p. 213.10.4172/2329-9509.1000213
34.
Yerramshetty
,
J. S.
, and
Akkus
,
O.
,
2008
, “
The Associations Between Mineral Crystallinity and the Mechanical Properties of Human Cortical Bone
,”
Bone
,
42
(
3
), pp.
476
482
.10.1016/j.bone.2007.12.001
35.
Hughes
,
J. M.
,
Gaffney-Stomberg
,
E.
,
Guerriere
,
K. I.
,
Taylor
,
K. M.
,
Popp
,
K. L.
,
Xu
,
C.
,
Unnikrishnan
,
G.
,
Staab
,
J. S.
,
Matheny
,
R. W.
,
McClung
,
J. P.
,
Reifman
,
J.
, and
Bouxsein
,
M. L.
,
2018
, “
Changes in Tibial Bone Microarchitecture in Female Recruits in Response to 8-Weeks of U.S. Army Basic Combat Training
,”
Bone
,
113
, pp.
9
16
.10.1016/j.bone.2018.04.021
36.
O'Leary
,
T.
,
Izard
,
R.
,
Walsh
,
N.
,
Tang
,
J.
,
Fraser
,
W.
, and
Greeves
,
J.
,
2019
, “
Skeletal Macro- and Microstructure Adaptations in Men Undergoing Arduous Military Training
,”
Bone
,
125
, pp.
54
60
.10.1016/j.bone.2019.05.009
37.
Marcus
,
J. E.
,
Frankel
,
D. N.
,
Pawlak
,
M. T.
,
Casey
,
T. M.
,
Blackwell
,
R. S.
,
Tran
,
F. V.
,
Dolan
,
M. J.
, and
Yun
,
H. C.
,
2020
, “
COVID-19 Monitoring and Response Among U.S. Air Force Basic Military Trainees—Texas, March–April 2020
,”
MMWR. Morb. Mortal. Wkly. Rep.
,
69
(
22
), pp.
685
688
.10.15585/mmwr.mm6922e2
38.
Gaffney-Stomberg
,
E.
,
Lutz
,
L. J.
,
Rood
,
J. C.
,
Cable
,
S. J.
,
Pasiakos
,
S. M.
,
Young
,
A. J.
, and
McClung
,
J. P.
,
2014
, “
Calcium and Vitamin D Supplementation Maintains Parathyroid Hormone and Improves Bone Density During Initial Military Training: A Randomized, Double-Blind, Placebo Controlled Trial
,”
Bone
,
68
, pp.
46
56
.10.1016/j.bone.2014.08.002
39.
Hunter
,
I.
, and
Smith
,
G. A.
,
2007
, “
Preferred and Optimal Stride Frequency, Stiffness and Economy: Changes With Fatigue During a 1-h High-Intensity Run
,”
Eur. J. Appl. Physiol.
,
100
(
6
), pp.
653
661
.10.1007/s00421-007-0456-1
40.
de Ruiter
,
C. J.
,
Verdijk
,
P. W. L.
,
Werker
,
W.
,
Zuidema
,
M. J.
, and
de Haan
,
A.
,
2014
, “
Stride Frequency in Relation to Oxygen Consumption in Experienced and Novice Runners
,”
Eur. J. Sport Sci.
,
14
(
3
), pp.
251
258
.10.1080/17461391.2013.783627
41.
Van Oeveren
,
B. T.
,
De Ruiter
,
C. J.
,
Beek
,
P. J.
, and
Van Dieën
,
J. H.
,
2017
, “
Optimal Stride Frequencies in Running at Different Speeds
,”
PLoS One
,
12
(
10
), p.
e0184273
.10.1371/journal.pone.0184273
42.
Redmond
,
J. E.
,
Cohen
,
B. S.
,
Simpson
,
K.
,
Spiering
,
B. A.
, and
Sharp
,
M. A.
,
2013
, “
Measuring Physical Activity During US Army Basic Combat Training: A Comparison of 3 Methods
,”
US Army Med. Dep. J.
, 1, pp.
48
54
.https://pubmed.ncbi.nlm.nih.gov/24146242/
43.
Redmond
,
J.
,
Simpson
,
K.
,
Cohen
,
B.
,
Knapik
,
J.
,
Steelman
,
R.
, and
Sharp
,
M.
,
2014
, “
Quantification of Physical Activity During Basic Combat Training and Associated Injuries
,”
Army Research Institute of Environmental Medicine
,
Natick, MA
.
44.
Leichter
,
I.
,
Simkin
,
A.
,
Margulies
,
J. Y.
,
Bivas
,
A.
,
Steinberg
,
R.
,
Giladi
,
M.
, and
Milgrom
,
C.
,
1989
, “
Gain in Mass Density of Bone Following Strenuous Physical Activity
,”
J. Orthop. Res.
,
7
(
1
), pp.
86
90
.10.1002/jor.1100070112
45.
Gaofeng
,
W.
,
Xueling
,
B.
,
Hongsheng
,
W.
,
Zengliang
,
F.
, and
Chengtao
,
W.
,
2009
, “
Component Mode Synthesis Approach to Estimate Tibial Strains in Gait
,”
J. Med. Eng. Technol.
,
33
(
6
), pp.
488
495
.10.1080/03091900902972459
46.
Brent Edwards
,
W.
,
Taylor
,
D.
,
Rudolphi
,
T. J.
,
Gillette
,
J. C.
, and
Derrick
,
T. R.
,
2010
, “
Effects of Running Speed on a Probabilistic Stress Fracture Model
,”
Clin. Biomech.
,
25
(
4
), pp.
372
377
.10.1016/j.clinbiomech.2010.01.001
47.
Xu
,
C.
,
Silder
,
A.
,
Zhang
,
J.
,
Hughes
,
J.
,
Unnikrishnan
,
G.
,
Reifman
,
J.
, and
Rakesh
,
V.
,
2016
, “
An Integrated Musculoskeletal-Finite-Element Model to Evaluate Effects of Load Carriage on the Tibia During Walking
,”
ASME J. Biomech. Eng.
,
138
(
10
), p.
101001
.10.1115/1.4034216
48.
Hadid
,
A.
,
Epstein
,
Y.
,
Shabshin
,
N.
, and
Gefen
,
A.
,
2018
, “
Biomechanical Model for Stress Fracture-Related Factors in Athletes and Soldiers
,”
Med. Sci. Sports Exerc.
,
50
(
9
), pp.
1827
1836
.10.1249/MSS.0000000000001628
49.
Burnett
,
J. K.
,
2017
,
Bone Strain Change as a Result of a Long Distance Run Modeled on a Finite Element Tibia
,
Iowa State University
, Ames, IA.
50.
Beck
,
B. R.
,
1998
, “
Tibial Stress Injuries. An Aetiological Review for the Purposes of Guiding Management
,”
Sport. Med.
,
26
(
4
), pp.
265
279
.10.2165/00007256-199826040-00005
51.
Kijowski
,
R.
,
Choi
,
J.
,
Shinki
,
K.
,
Del Rio
,
A. M.
, and
De Smet
,
A.
,
2012
, “
Validation of MRI Classification System for Tibial Stress Injuries
,”
Am. J. Roentgenol.
,
198
(
4
), pp.
878
884
.10.2214/AJR.11.6826
52.
Milgrom
,
C.
,
2001
, “
The Role of Strain and Strain Rates in Stress Fractures
,”
Musculoskeletal Fatigue and Stress Fractures
, Lewis Publishers, Boca Raton, FL, pp.
119
129
.
53.
Kardouni
,
J. R.
,
McKinnon
,
C. J.
,
Taylor
,
K. M.
, and
Hughes
,
J. M.
,
2021
, “
Timing of Stress Fractures in Soldiers During the First 6 Career Months: A Retrospective Cohort Study
,”
J. Athl. Train.
,
56
(
12
), pp.
1278
1284
.10.4085/1062-6050-0380.19
54.
Armstrong
,
D. W.
,
Rue
,
J. P. H.
,
Wilckens
,
J. H.
, and
Frassica
,
F. J.
,
2004
, “
Stress Fracture Injury in Young Military Men and Women
,”
Bone
,
35
(
3
), pp.
806
816
.10.1016/j.bone.2004.05.014
55.
Sundaramurthy
,
A.
,
Xu
,
C.
,
Hughes
,
J. M.
,
Gaffney-Stomberg
,
E.
,
Guerriere
,
K. I.
,
Popp
,
K. L.
,
Bouxsein
,
M. L.
,
Reifman
,
J.
, and
Unnikrishnan
,
G.
,
2019
, “
Regional Changes in Density and Microarchitecture in the Ultradistal Tibia of Female Recruits After U.S. Army Basic Combat Training
,”
Calcif. Tissue Int.
,
105
(
1
), pp.
68
76
.10.1007/s00223-019-00548-7
56.
Vavalle
,
N. A.
,
Moreno
,
D. P.
,
Rhyne
,
A. C.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
Lateral Impact Validation of a Geometrically Accurate Full Body Finite Element Model for Blunt Injury Prediction
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
497
512
.10.1007/s10439-012-0684-3
57.
Lerner
,
Z. F.
,
DeMers
,
M. S.
,
Delp
,
S. L.
, and
Browning
,
R. C.
,
2015
, “
How Tibiofemoral Alignment and Contact Locations Affect Predictions of Medial and Lateral Tibiofemoral Contact Forces
,”
J. Biomech.
,
48
(
4
), pp.
644
650
.10.1016/j.jbiomech.2014.12.049
58.
Giladi
,
M.
,
Milgrom
,
C.
,
Simkin
,
A.
, and
Danon
,
Y.
,
1991
, “
Stress Fractures: Identifiable Risk Factors
,”
Am. J. Sports Med.
,
19
(
6
), pp.
647
652
.10.1177/036354659101900617
59.
Abdel-Wahab
,
A. A.
,
Alam
,
K.
, and
Silberschmidt
,
V. V.
,
2011
, “
Analysis of Anisotropic Viscoelastoplastic Properties of Cortical Bone Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
5
), pp.
807
820
.10.1016/j.jmbbm.2010.10.001
60.
Whitehouse
,
W. J.
,
1974
, “
The Quantitative Morphology of Anisotropic Trabecular Bone
,”
J. Microsc.
,
101
(
2
), pp.
153
168
.10.1111/j.1365-2818.1974.tb03878.x
61.
Doblaré
,
M.
, and
Garcı́a
,
J. M.
,
2002
, “
Anisotropic Bone Remodelling Model Based on a Continuum Damage-Repair Theory
,”
J. Biomech.
,
35
(
1
), pp.
1
17
.10.1016/S0021-9290(01)00178-6
62.
García-Aznar
,
J. M.
,
Rueberg
,
T.
, and
Doblare
,
M.
,
2005
, “
A Bone Remodelling Model Coupling Microdamage Growth and Repair by 3D BMU-Activity
,”
Biomech. Model. Mechanobiol.
,
4
(
2–3
), pp.
147
167
.10.1007/s10237-005-0067-x
63.
Schütte
,
K. H.
,
Seerden
,
S.
,
Venter
,
R.
, and
Vanwanseele
,
B.
,
2018
, “
Influence of Outdoor Running Fatigue and Medial Tibial Stress Syndrome on Accelerometer-Based Loading and Stability
,”
Gait Posture
,
59
, pp.
222
228
.10.1016/j.gaitpost.2017.10.021
64.
Hill
,
C. N.
,
Reed
,
W.
,
Schmitt
,
D.
,
Sands
,
L. P.
, and
Queen
,
R. M.
,
2020
, “
Racial Differences in Gait Mechanics
,”
J. Biomech.
,
112
, p.
110070
.10.1016/j.jbiomech.2020.110070
You do not currently have access to this content.