Abstract

Computational hemodynamic modeling has been widely used in cardiovascular research and healthcare. However, the reliability of model predictions is largely dependent on the uncertainties of modeling parameters and boundary conditions, which should be carefully quantified and further reduced with available measurements. In this work, we focus on propagating and reducing the uncertainty of vascular geometries within a Bayesian framework. A novel deep learning (DL)-assisted parallel Markov chain Monte Carlo (MCMC) method is presented to enable efficient Bayesian posterior sampling and geometric uncertainty reduction. A DL model is built to approximate the geometry-to-hemodynamic map, which is trained actively using online data collected from parallel MCMC chains and utilized for early rejection of unlikely proposals to facilitate convergence with less expensive full-order model evaluations. Numerical studies on two-dimensional aortic flows are conducted to demonstrate the effectiveness and merit of the proposed method.

References

1.
Steinman
,
D. A.
, and
Taylor
,
C. A.
,
2005
, “
Flow Imaging and Computing: Large Artery Hemodynamics
,”
Ann. Biomed. Eng.
,
33
(
12
), pp.
1704
1709
.10.1007/s10439-005-8772-2
2.
Xiang
,
J.
,
Antiga
,
L.
,
Varble
,
N.
,
Snyder
,
K. V.
,
Levy
,
E. I.
,
Siddiqui
,
A. H.
, and
Meng
,
H.
,
2016
, “
AView: An Image-Based Clinical Computational Tool for Intracranial Aneurysm Flow Visualization and Clinical Management
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1085
1096
.10.1007/s10439-015-1363-y
3.
Quarteroni
,
A.
,
Manzoni
,
A.
, and
Vergara
,
C.
,
2017
, “
The Cardiovascular System: Mathematical Modelling, Numerical Algorithms and Clinical Applications
,”
Acta Numer.
,
26
, pp.
365
590
.10.1017/S0962492917000046
4.
Berg
,
P.
,
Saalfeld
,
S.
,
Voß
,
S.
,
Beuing
,
O.
, and
Janiga
,
G.
,
2019
, “
A Review on the Reliability of Hemodynamic Modeling in Intracranial Aneurysms: Why Computational Fluid Dynamics Alone Cannot Solve the Equation
,”
Neurosurg. Focus
,
47
(
1
), p.
E15
.10.3171/2019.4.FOCUS19181
5.
Steinman
,
D. A.
, and
Pereira
,
V. M.
,
2019
, “
How Patient Specific Are Patient-Specific Computational Models of Cerebral Aneurysms? An Overview of Sources of Error and Variability
,”
Neurosurg. Focus
,
47
(
1
), p.
E14
.10.3171/2019.4.FOCUS19123
6.
Steinman
,
D. A.
, and
Migliavacca
,
F.
,
2018
, “
Special Issue on Verification, Validation, and Uncertainty Quantification of Cardiovascular Models: Towards Effective VVUQ for Translating Cardiovascular Modelling to Clinical Utility
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
539
543
.10.1007/s13239-018-00393-z
7.
Gao
,
H.
, and
Wang
,
J.-X.
,
2021
, “
A Bi-Fidelity Ensemble Kalman Method for PDE-Constrained Inverse Problems in Computational Mechanics
,”
Comput. Mech.
,
67
(
4
), pp.
1115
1131
.10.1007/s00466-021-01979-6
8.
Gao
,
H.
,
Zhu
,
X.
, and
Wang
,
J.-X.
,
2020
, “
A Bi-Fidelity Surrogate Modeling Approach for Uncertainty Propagation in Three-Dimensional Hemodynamic Simulations
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113047
.10.1016/j.cma.2020.113047
9.
Guzzetti
,
S.
,
Alvarez
,
L. M.
,
Blanco
,
P.
,
Carlberg
,
K. T.
, and
Veneziani
,
A.
,
2020
, “
Propagating Uncertainties in Large-Scale Hemodynamics Models Via Network Uncertainty Quantification and Reduced-Order Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
358
, p.
112626
.10.1016/j.cma.2019.112626
10.
Bertaglia
,
G.
,
Caleffi
,
V.
,
Pareschi
,
L.
, and
Valiani
,
A.
,
2021
, “
Uncertainty Quantification of Viscoelastic Parameters in Arterial Hemodynamics With the a-FSI Blood Flow Model
,”
J. Comput. Phys.
,
430
, p.
110102
.10.1016/j.jcp.2020.110102
11.
Tran
,
J. S.
,
Schiavazzi
,
D. E.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2019
, “
Uncertainty Quantification of Simulated Biomechanical Stimuli in Coronary Artery Bypass Grafts
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
402
428
.10.1016/j.cma.2018.10.024
12.
Tran
,
J. S.
,
Schiavazzi
,
D. E.
,
Ramachandra
,
A. B.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2017
, “
Automated Tuning for Parameter Identification and Uncertainty Quantification in Multi-Scale Coronary Simulations
,”
Comput. Fluids
,
142
, pp.
128
138
.10.1016/j.compfluid.2016.05.015
13.
Sankaran
,
S.
,
Kim
,
H. J.
,
Choi
,
G.
, and
Taylor
,
C. A.
,
2016
, “
Uncertainty Quantification in Coronary Blood Flow Simulations: Impact of Geometry, Boundary Conditions and Blood Viscosity
,”
J. Biomech.
,
49
(
12
), pp.
2540
2547
.10.1016/j.jbiomech.2016.01.002
14.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031001
.10.1115/1.4003259
15.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2010
, “
The Impact of Uncertainty on Shape Optimization of Idealized Bypass Graft Models in Unsteady Flow
,”
Phys. Fluids
,
22
(
12
), p.
121902
.10.1063/1.3529444
16.
Fleeter
,
C. M.
,
Geraci
,
G.
,
Schiavazzi
,
D. E.
,
Kahn
,
A. M.
, and
Marsden
,
A. L.
,
2020
, “
Multilevel and Multifidelity Uncertainty Quantification for Cardiovascular Hemodynamics
,”
Comput. Methods Appl. Mech. Eng.
,
365
, p.
113030
.10.1016/j.cma.2020.113030
17.
Lucor
,
D.
, and
Le Maître
,
O. P.
,
2018
, “
Cardiovascular Modeling With Adapted Parametric Inference
,”
ESAIM: Proc. Surv.
,
62
, pp.
91
107
.10.1051/proc/201862091
18.
Wang
,
J.-X.
,
Hu
,
X.
, and
Shadden
,
S. C.
,
2019
, “
Data-Augmented Modeling of Intracranial Pressure
,”
Ann. Biomed. Eng.
,
47
(
3
), pp.
714
730
.10.1007/s10439-018-02191-z
19.
Arnold
,
A.
,
Battista
,
C.
,
Bia
,
D.
,
German
,
Y. Z.
,
Armentano
,
R. L.
,
Tran
,
H.
, and
Olufsen
,
M. S.
,
2017
, “
Uncertainty Quantification in a Patient-Specific One-Dimensional Arterial Network Model: EnKF-Based Inflow Estimator
,”
J. Verif., Validation Uncertainty Quantif.
,
2
(
1
), p.
011002
.10.1115/1.4035918
20.
Seo
,
J.
,
Fleeter
,
C.
,
Kahn
,
A. M.
,
Marsden
,
A. L.
, and
Schiavazzi
,
D. E.
,
2020
, “
Multifidelity Estimators for Coronary Circulation Models Under Clinically Informed Data Uncertainty
,”
Int. J. Uncertainty Quantif.
,
10
(
5
), pp.
449
466
.10.1615/Int.J.UncertaintyQuantification.2020033068
21.
Sun
,
L.
, and
Wang
,
J.-X.
,
2020
, “
Physics-Constrained Bayesian Neural Network for Fluid Flow Reconstruction With Sparse and Noisy Data
,”
Theor. Appl. Mech. Lett.
,
10
(
3
), pp.
161
169
.10.1016/j.taml.2020.01.031
22.
Lakshminarayanan
,
B.
,
Pritzel
,
A.
, and
Blundell
,
C.
,
2017
, “
Simple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles
,”
NIPS'17: Proceedings of the 31st International Conference on Neural Information Processing Systems
, Long Beach, CA, Dec. 4–9, Vol.
30
, pp.
6405
6416
.https://proceedings.neurips.cc/paper/2017/file/9ef2ed4b7fd2c810847ffa5fa85bce38-Paper.pdf
23.
Carpenter
,
B.
,
Gelman
,
A.
,
Hoffman
,
M. D.
,
Lee
,
D.
,
Goodrich
,
B.
,
Betancourt
,
M.
,
Brubaker
,
M.
,
Guo
,
J.
,
Li
,
P.
, and
Riddell
,
A.
,
2017
, “
Stan: A Probabilistic Programming Language
,”
J. Stat. Software
,
76
(
1
), pp.
1
32
.10.18637/jss.v076.i01
24.
Bliznyuk
,
N.
,
Ruppert
,
D.
,
Shoemaker
,
C.
,
Regis
,
R.
,
Wild
,
S.
, and
Mugunthan
,
P.
,
2008
, “
Bayesian Calibration and Uncertainty Analysis for Computationally Expensive Models Using Optimization and Radial Basis Function Approximation
,”
J. Comput. Graphical Stat.
,
17
(
2
), pp.
270
294
.10.1198/106186008X320681
25.
Zhang
,
J.
, and
Taflanidis
,
A. A.
,
2018
, “
Adaptive Kriging Stochastic Sampling and Density Approximation and Its Application to Rare-Event Estimation
,”
ASCE-ASME J. Risk Uncertainty Eng. Syst., Part A: Civ. Eng.
,
4
(
3
), p.
04018021
.10.1061/AJRUA6.0000969
26.
Elsheikh
,
A. H.
,
Hoteit
,
I.
, and
Wheeler
,
M. F.
,
2014
, “
Efficient Bayesian Inference of Subsurface Flow Models Using Nested Sampling and Sparse Polynomial Chaos Surrogates
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
515
537
.10.1016/j.cma.2013.11.001
27.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J.-X.
,
2020
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112732
.10.1016/j.cma.2019.112732
28.
Du
,
P.
,
Zhu
,
X.
, and
Wang
,
J.-X.
,
2022
, “
Deep Learning-Based Surrogate Model for Three-Dimensional Patient-Specific Computational Fluid Dynamics
,”
Physics of Fluids
, 34(
8
), p.
081906
.10.1063/5.0101128
29.
Cui
,
T.
,
Fox
,
C.
, and
O'Sullivan
,
M. J.
,
2011
, “
Bayesian Calibration of a Large-Scale Geothermal Reservoir Model by a New Adaptive Delayed Acceptance Metropolis Hastings Algorithm
,”
Water Resour. Res.
,
47
(
10
), p. W10521.10.1029/2010WR010352
30.
Cui
,
T.
,
Marzouk
,
Y. M.
, and
Willcox
,
K. E.
,
2015
, “
Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems
,”
Int. J. Numer. Methods Eng.
,
102
(
5
), pp.
966
990
.10.1002/nme.4748
31.
Zhang
,
J.
, and
Taflanidis
,
A. A.
,
2019
, “
Accelerating MCMC Via Kriging-Based Adaptive Independent Proposals and Delayed Rejection
,”
Comput. Methods Appl. Mech. Eng.
,
355
, pp.
1124
1147
.10.1016/j.cma.2019.07.016
32.
Conrad
,
P. R.
,
Davis
,
A. D.
,
Marzouk
,
Y. M.
,
Pillai
,
N. S.
, and
Smith
,
A.
,
2018
, “
Parallel Local Approximation MCMC for Expensive Models
,”
SIAM/ASA J. Uncertainty Quantif.
,
6
(
1
), pp.
339
373
.10.1137/16M1084080
33.
Wang
,
X.
,
Guo
,
F.
,
Heller
,
K. A.
, and
Dunson
,
D. B.
,
2015
, “
Parallelizing MCMC With Random Partition Trees
,”
Advances in Neural Information Processing Systems
, Vol.
28
, Morgan Kaufmann Publishers Inc., San Francisco, CA.
34.
Scott
,
S. L.
,
Blocker
,
A. W.
,
Bonassi
,
F. V.
,
Chipman
,
H. A.
,
George
,
E. I.
, and
McCulloch
,
R. E.
,
2016
, “
Bayes and Big Data: The Consensus Monte Carlo Algorithm
,”
Int. J. Manage. Sci. Eng. Manage.
,
11
(
2
), pp.
78
88
.10.1080/17509653.2016.1142191
35.
Mesquita
,
D.
,
Blomstedt
,
P.
, and
Kaski
,
S.
,
2020
, “
Embarrassingly Parallel MCMC Using Deep Invertible Transformations
,”
Proceedings of the 35th Uncertainty in Artificial Intelligence Conference
, Tel Aviv, Israel, pp.
1244
1252
.http://proceedings.mlr.press/v115/mesquita20a/mesquita20a.pdf
36.
Calderhead
,
B.
,
2014
, “
A General Construction for Parallelizing Metropolis-Hastings Algorithms
,”
Proc. Natl. Acad. Sci.
,
111
(
49
), pp.
17408
17413
.10.1073/pnas.1408184111
37.
Yang
,
S.
,
Chen
,
Y.
,
Bernton
,
E.
, and
Liu
,
J. S.
,
2018
, “
On Parallelizable Markov Chain Monte Carlo Algorithms With Waste-Recycling
,”
Stat. Comput.
,
28
(
5
), pp.
1073
1081
.10.1007/s11222-017-9780-4
38.
Schwedes
,
T.
, and
Calderhead
,
B.
,
2021
, “
Rao-Blackwellised Parallel MCMC
,”
International Conference on Artificial Intelligence and Statistics
, San Diego, CA, Apr. 13–15, pp.
3448
3456
.http://proceedings.mlr.press/v130/schwedes21a/schwedes21a.pdf
39.
Ni
,
Y.
,
Deng
,
Y.
, and
Li
,
S.
,
2021
, “
PMBA: A Parallel MCMC Bayesian Computing Accelerator
,”
IEEE Access
,
9
, pp.
65536
65546
.10.1109/ACCESS.2021.3076207
40.
Wilkinson
,
D. J.
,
2006
, “
Parallel Bayesian Computation
,”
Handbook of Parallel Computing and Statistics
(Statistics, Textbooks and Monographs, Vol.
184
), Chapman & Hall/CRC, London, UK
, p.
477
.
41.
Ye
,
J.
,
Wallace
,
A.
, and
Thompson
,
J.
,
2009
, “
Parallel Markov Chain Monte Carlo Computation for Varying-Dimension Signal Analysis
,”
17th European Signal Processing Conference
, Glasgow, UK, Aug. 24–28, pp.
2673
2677
.https://ieeexplore.ieee.org/document/7077541
42.
Jacob
,
P.
,
Robert
,
C. P.
, and
Smith
,
M. H.
,
2011
, “
Using Parallel Computation to Improve Independent Metropolis–Hastings Based Estimation
,”
J. Comput. Graphical Stat.
,
20
(
3
), pp.
616
635
.10.1198/jcgs.2011.10167
43.
Martino
,
L.
,
Elvira
,
V.
,
Luengo
,
D.
,
Corander
,
J.
, and
Louzada
,
F.
,
2016
, “
Orthogonal Parallel MCMC Methods for Sampling and Optimization
,”
Digital Signal Process.
,
58
, pp.
64
84
.10.1016/j.dsp.2016.07.013
44.
Sankaran
,
S.
,
Grady
,
L.
, and
Taylor
,
C. A.
,
2015
, “
Fast Computation of Hemodynamic Sensitivity to Lumen Segmentation Uncertainty
,”
IEEE Trans. Med. Imaging
,
34
(
12
), pp.
2562
2571
.10.1109/TMI.2015.2445777
45.
Cilla
,
M.
,
Casales
,
M.
,
Peña
,
E.
,
Martínez
,
M.
, and
Malvè
,
M.
,
2020
, “
A Parametric Model for Studying the Aorta Hemodynamics by Means of the Computational Fluid Dynamics
,”
J. Biomech.
,
103
, p.
109691
.10.1016/j.jbiomech.2020.109691
46.
Brüning
,
J.
,
Hellmeier
,
F.
,
Yevtushenko
,
P.
,
Kühne
,
T.
, and
Goubergrits
,
L.
,
2018
, “
Uncertainty Quantification for Non-Invasive Assessment of Pressure Drop Across a Coarctation of the Aorta Using CFD
,”
Cardiovasc. Eng. Technol.
,
9
(
4
), pp.
582
596
.10.1007/s13239-018-00381-3
47.
Schlömer
,
N.
, 2021,
pygalmesh: Python Interface for CGAL's Meshing Tools
.10.5281/zenodo.5564818
48.
Pletcher
,
R. H.
,
Tannehill
,
J. C.
, and
Anderson
,
D.
,
2012
,
Computational Fluid Mechanics and Heat Transfer
,
CRC Press LLC
,
Boca Raton, FL
.
49.
Liaw
,
R.
,
Liang
,
E.
,
Nishihara
,
R.
,
Moritz
,
P.
,
Gonzalez
,
J. E.
, and
Stoica
,
I.
,
2018
, “
Tune: A Research Platform for Distributed Model Selection and Training
,” e-print
arXiv:1807.05118
.10.48550/arXiv.1807.05118
You do not currently have access to this content.