Abstract

The flight of bats is comparatively less documented and understood than birds and insects and may provide novel inspiration for the design of flapping flight robots. This study captured the natural flight of short-nosed fruit bats (Cynopterus sphinx) by an optical motion capture system, “OptiTrack”, with pasted markers on the wings and body to reconstruct the flight parameters. Due to the self-occlusion at some moments, points on the membrane wings cannot be captured by any cameras. To draw a smooth trajectory, it is desired to reconstruct all missing data. Therefore, an algorithm is proposed by using numerical techniques, accompanied by modern mathematical and computational tools, to envisage the missing data from the captured flight. The least-square fitted polynomial engendered the parameter equations for x-, y-, and z-coordinates of marked points which were used to reconstruct the trajectory of the flight. The parameter equations of position coordinates were also used to compute the morphological and aerodynamic characteristics of the flight. The most outstanding contribution of the work is that not only the trajectory, velocity, and velocity field but also the morphing areas of the membrane wings were recreated using the reconstructed data. These data and reconstructed curves of trajectory and velocity field will be used for the further aerodynamic analysis and mechanism design of the flapping robot. This method can also be generalized to reconstruct the performance parameters of any other animals for bionic design.

References:

1.
Ellington
,
C. P.
,
1991
, “
Limitations on Animal Flight Performance
,”
J. Exp. Biol.
,
160
(
1
), pp. 7
1
91
.10.1242/jeb.160.1.71
2.
Hedenström
,
A.
,
Johansson
,
L. C.
, and
Spedding
,
G. R.
,
2009
, “
Bird or Bat: Comparing Airframe Design and Flight Performance
,”
Bioinspir. Biomim.
,
4
(
1
), p.
015001
.10.1088/1748-3182/4/1/015001
3.
Hedrick
,
T. L.
,
Cheng
,
B.
, and
Deng
,
X.
,
2009
, “
Wingbeat Time and the Scaling of Passive Rotational Damping in Flapping Flight
,”
Science
,
324
(
5924
), pp.
252
255
.10.1126/science.1168431
4.
Johansson
,
L. C.
,
Wolf
,
M.
, and
Hedenstrom
,
A.
,
2010
, “
A Quantitative Comparison of Bird and Bat Wakes
,”
J. R. Soc. Interface
,
7
(
42
), pp.
61
66
.10.1098/rsif.2008.0541
5.
Swartz
,
S. M.
,
Groves
,
M. S.
,
Kim
,
H. D.
, and
Walsh
,
W. R.
,
1996
, “
Mechanical Properties of Bat Wing Membrane Skin
,”
J. Zool.
,
239
(
2
), pp.
357
378
.10.1111/j.1469-7998.1996.tb05455.x
6.
Norberg
,
U. M.
, and
Rayner
,
J. M. V.
,
1987
, “
Ecological Morphology and Flight in Bats (Mammalia; Chiroptera): Wing Adaptations, Flight Performance, Foraging Strategy and Echolocation
,”
Philos. Trans. R. Soc. B Biol. Sci.
,
316
(
1179
), pp.
335
427
.10.1098/rstb.1987.0030
7.
Hedenstrom
,
A.
, and
Johansson
,
L. C.
,
2015
, “
Bat Flight: Aerodynamics, Kinematics and Flight Morphology
,”
J. Exp. Biol.
,
218
(
5
), pp.
653
663
.10.1242/jeb.031203
8.
Swartz
,
S. M.
, and
Konow
,
N.
,
2015
, “
Advances in the Study of Bat Flight: The Wing and the Wind
,”
Can. J. Zool.
,
93
(
12
), pp.
977
990
.10.1139/cjz-2015-0117
9.
Norberg
,
U. M.
,
1976
, “
Aerodynamics, Kinematics, and Energetics of Horizontal Flapping Flight in the Long-Eared Bat Plecotus Auritus
,”
J. Exp. Biol.
,
65
(
1
), pp.
179
212
.10.1242/jeb.65.1.179
10.
Norberg
,
U. M. L.
,
1976
, “
Aerodynamics of Hovering Flight in the Long-Eared Bat Plecotus Auritus
,”
J. Exp. Biol.
,
65
(
2
), pp.
459
470
.10.1242/jeb.65.2.459
11.
Aldridge
,
H. D.
,
1986
, “
Kinematics and Aerodynamics of the Greater Horseshoe Bat, Rhinolophus Ferrumequinum, in Horizontal Flight at Various Flight Speeds
,”
J. Exp. Biol.
,
126
(
1
), pp.
479
497
.10.1242/jeb.126.1.479
12.
Rayner
,
J. M. V.
, and
Aldridge
,
H. D. J. N.
,
1985
, “
Three-Dimensional Reconstruction of Animal Flight Paths and the Turning Flight of Microchiropteran Bats
,”
J. Exp. Biol.
,
118
(
1
), pp.
247
265
.10.1242/jeb.118.1.247
13.
Lauder
,
G. V.
, and
Madden
,
P. G. A.
,
2008
, “
Advances in Comparative Physiology From High-Speed Imaging of Animal and Fluid Motion
,”
Annu. Rev. Physiol.
,
70
(
1
), pp.
143
163
.10.1146/annurev.physiol.70.113006.100438
14.
Ou-Yang
,
T. H.
,
Tsai
,
M. L.
,
Yen
,
C. T.
, and
Lin
,
T. T.
,
2011
, “
An Infrared Range Camera-Based Approach for Three-Dimensional Locomotion Tracking and Pose Reconstruction in a Rodent
,”
J. Neurosci. Methods
,
201
(
1
), pp.
116
123
.10.1016/j.jneumeth.2011.07.019
15.
Bender
,
M. J.
,
Guo
,
J.
,
Powell
,
N.
,
Kurdila
,
A.
, and
Müller
,
R.
,
2019
, “
Learning Bioinspired Joint Geometry From Motion Capture Data of Bat Flight
,”
Bioinspir. Biomim.
,
14
(
3
), p.
036013
10.1088/1748-3190/ab0fba
16.
Zong
,
W.
,
Wang
,
Z.
,
Xing
,
Q.
,
Zhu
,
J.
,
Wang
,
L.
,
Qin
,
K.
,
Bai
,
H.
,
Yu
,
M.
, and
Dai
,
Z.
,
2018
, “
The Method of Multi-Camera Layout in Motion Capture System for Diverse Small Animals
,”
Appl. Sci.
,
8
(
9
), p.
1562
10.3390/app8091562
17.
Bender
,
M.
,
Tian
,
L.
,
Fan
,
X.
,
Kurdila
,
A.
, and
Müller
,
R.
,
2019
, “
Spatially Recursive Estimation and Gaussian Process Dynamic Models of Bat Flapping Flight
,”
Nonlinear Dyn.
,
95
(
1
), pp.
217
237
.10.1007/s11071-018-4560-z
18.
Li
,
B.
, and
Zhang
,
S.
,
2018
, “
Novel Method for Measuring a Dense 3D Strain Map of Robotic Flapping Wings
,”
Meas. Sci. Technol.
,
29
(
4
), p.
045402
.10.1088/1361-6501/aaa4cc
19.
Ulrich
,
E. R.
,
Pines
,
D. J.
, and
Humbert
,
J. S.
,
2010
, “
From Falling to Flying: The Path to Powered Flight of a Robotic Samara Nano Air Vehicle
,”
Bioinspir. Biomim.
,
5
(
4
), p.
045009
.10.1088/1748-3182/5/4/045009
20.
Rongfa
,
M.
,
Pantuphag
,
T.
, and
Srigrarom
,
S.
,
2016
, “
Analysis of Kinematics of Flapping Wing UAV Using OptiTrack Systems
,”
Aerospace
,
3
(
3
), p.
23
10.3390/aerospace3030023
21.
Thomas
,
J.
,
Loianno
,
G.
,
Polin
,
J.
,
Sreenath
,
K.
, and
Kumar
,
V.
,
2014
, “
Toward Autonomous Avian-Inspired Grasping for Micro Aerial Vehicles
,”
Bioinspir. Biomim.
,
9
(
2
), p.
025010
10.1088/1748-3182/9/2/025010
22.
Armanini
,
S. F.
,
Caetano
,
J. V.
,
Croon
,
G. C. H. E. D.
,
Visser
,
C. C. D.
, and
Mulder
,
M.
,
2016
, “
Quasi-Steady Aerodynamic Model of Clap-and-Fling Flapping MAV and Validation Using Free-Flight Data
,”
Bioinspir. Biomim.
,
11
(
4
), p.
046002
10.1088/1748-3190/11/4/046002
23.
Iriarte-Díaz
,
J.
, and
Swartz
,
S. M.
,
2008
, “
Kinematics of Slow Turn Maneuvering in the Fruit Bat Cynopterus Brachyotis
,”
J. Exp. Biol
,
211
(
21
), pp.
3478
3489
.10.1242/jeb.017590
24.
Riskin
,
D. K.
,
Iriarte-Diaz
,
J.
,
Middleton
,
K. M.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2010
, “
The Effect of Body Size on the Wing Movements of Pteropodid Bats, With Insights Into Thrust and Lift Production
,”
J. Exp. Biol.
,
213
(
23
), pp.
4110
4122
.10.1242/jeb.043091
25.
Wolf
,
M.
,
Johansson
,
L. C.
,
von Busse
,
R.
,
Winter
,
Y.
, and
Hedenström
,
A.
,
2010
, “
Kinematics of Flight and the Relationship to the Vortex Wake of a Pallas' Long-Tongued Bat (Glossophaga Soricina)
,”
J. Exp. Biol.
,
213
(
12
), pp.
2142
2153
.10.1242/jeb.029777
26.
Von Busse
,
R.
,
Hedenstrom
,
A.
,
Winter
,
Y.
, and
Johansson
,
L. C.
,
2012
, “
Kinematics and Wing Shape Across Flight Speed in the Bat, Leptonycteris Yerbabuenae
,”
Biol. Open
,
1
(
12
), pp.
1226
1238
.10.1242/bio.20122964
27.
Hedrick
,
T. L.
,
2008
, “
Software Techniques for Two- and Three-Dimensional Kinematic Measurements of Biological and Biomimetic Systems
,”
Bioinspir. Biomim.
,
3
(
3
), p.
034001
10.1088/1748-3182/3/3/034001
28.
Tian
,
X.
,
Iriarte-Diaz
,
J.
,
Middleton
,
K.
,
Galvao
,
R.
,
Israeli
,
E.
,
Roemer
,
A.
,
Sullivan
,
A.
,
Song
,
A.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2006
, “
Direct Measurements of the Kinematics and Dynamics of Bat Flight
,”
Bioinspir. Biomim.
,
1
(
4
), pp.
S10
S18
.10.1088/1748-3182/1/4/S02
29.
Hubel
,
T. Y.
,
Hristov
,
N. I.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2012
, “
Changes in Kinematics and Aerodynamics Over a Range of Speeds in Tadarida Brasiliensis, the Brazilian Free-Tailed Bat
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1120
1130
.10.1098/rsif.2011.0838
30.
Norberg
,
U. M. L.
, and
Winter
,
Y.
,
2006
, “
Wing Beat Kinematics of a Nectar-Feeding Bat, Glossophaga Soricina, Flying at Different Flight Speeds and Strouhal Numbers
,”
J. Exp. Biol.
,
209
(
19
), pp.
3887
3897
.10.1242/jeb.02446
31.
Riskin
,
D. K.
,
Willis
,
D. J.
,
Iriarte-Díaz
,
J.
,
Hedrick
,
T. L.
,
Kostandov
,
M.
,
Chen
,
J.
,
Laidlaw
,
D. H.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2008
, “
Quantifying the Complexity of Bat Wing Kinematics
,”
J. Theor. Biol.
,
254
(
3
), pp.
604
615
.10.1016/j.jtbi.2008.06.011
32.
MacAyeal, L. C., Riskin, D. K., Swartz, S. M., and Breuer, K. S., 2011, “Climbing Flight Performance and Load Carrying in Lesser Dog-Faced Fruit Bats (Cynopterus Brachyotis),”
J. Exp. Biol.
, 214(5), pp. 786–793.10.1242/jeb.050195
33.
Hubel
,
T. Y.
,
Riskin
,
D. K.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2010
, “
Wake Structure and Wing Kinematics: The Flight of the Lesser Dog-Faced Fruit Bat, Cynopterus Brachyotis
,”
J. Exp. Biol
,.,
213
(
20
), pp.
3427
3440
.10.1242/jeb.043257
34.
Wang
,
S.
,
Zhang
,
X.
,
He
,
G.
, and
Liu
,
T.
,
2015
, “
Numerical Simulation of Unsteady Flows Over a Slow-Flying Bat
,”
Theor. Appl. Mech. Lett.
,
5
(
1
), pp.
5
8
.10.1016/j.taml.2015.01.006
35.
Riskin
,
D. K.
,
Bahlman
,
J. W.
,
Hubel
,
T. Y.
,
Ratcliffe
,
J. M.
,
Kunz
,
T. H.
, and
Swartz
,
S. M.
,
2009
, “
Bats Go Head-Under-Heels: The Biomechanics of Landing on a Ceiling
,”
J. Exp. Biol.
,
212
(
7
), pp.
945
953
.10.1242/jeb.026161
36.
Iriarte-Diaz
,
J.
,
Riskin
,
D. K.
,
Willis
,
D. J.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2011
, “
Whole-Body Kinematics of a Fruit Bat Reveal the Influence of Wing Inertia on Body Accelerations
,”
J. Exp. Biol.
,
214
(
9
), pp.
1546
1553
.10.1242/jeb.037804
37.
Watts
,
P.
,
Mitchell
,
E. J.
, and
Swartz
,
S. A.
,
2001
, “
Computational Model for Estimating the Mechanics of Horizontal Flapping Flight in Bats: Model Description and Validation
,”
J. Exp. Biol.
,
204
(
16
), pp.
2873
2898
.10.1242/jeb.204.16.2873
38.
Hicheur
,
H.
,
Boujon
,
C.
,
Wong
,
C.
,
Pham
,
Q. C.
,
Annoni
,
J. M.
, and
Bihl
,
T.
,
2016
, “
Planning of Spatially-Oriented Locomotion Following Focal Brain Damage in Humans: A Pilot Study
,”
Behav. Brain Res.
,
301
, pp.
33
42
.10.1016/j.bbr.2015.12.014
39.
Nagymáté
,
G.
,
Tuchband
,
T.
, and
Kiss
,
R. M. A.
,
2018
, “
Novel Validation and Calibration Method for Motion Capture Systems Based on Micro-Triangulation
,”
J. Biomech.
,
74
, pp.
16
22
.10.1016/j.jbiomech.2018.04.009
40.
Aurand
,
A. M.
,
Dufour
,
J. S.
, and
Marras
,
W. S.
,
2017
, “
Accuracy Map of an Optical Motion Capture System With 42 or 21 Cameras in a Large Measurement Volume
,”
J. Biomech.
,
58
, pp.
237
240
.10.1016/j.jbiomech.2017.05.006
41.
Hubel
,
T. Y.
,
Hristov
,
N. I.
,
Swartz
,
S. M.
, and
Breuer
,
K. S.
,
2009
, “
Time-Resolved Wake Structure and Kinematics of Bat Flight
,”
Exp. Fluids
,
46
(
5
), pp.
933
943
.10.1007/s00348-009-0624-7
42.
Peressini
,
A. L.
,
Sullivan
,
F. E.
, Jr.
, and
Uhl
,
J. J.
,
1998
,
The Mathematics of Nonlinear Programming
,
Springer
,
New-York
, pp.
133
135
.
43.
Aldridge
,
H. D. J. N.
, and
Rautenbach
,
I. L.
,
1987
, “
Wing Morphology, Echolocation, and Resource Partitioning in Insectivorous Bats
,”
J. Anim. Ecol.
, 56(
3
), pp.
763–778
.10.2307/4947
44.
Purcell
,
E. M.
,
1977
, “
Life at Low Reynolds Number
,”
Am. J. Phys.
,
45
(
1
), pp.
3
11
.10.1119/1.10903
45.
Taylor
,
G. K.
,
Nudds
,
R. L.
, and
Thomas
,
A. L. R.
,
2003
, “
Flying and Swimming Animals Cruise at a Strouhal Number Tuned for High Power Efficiency
,”
Nature
,
425
(
6959
), pp.
707
711
.10.1038/nature02000
46.
Singh
,
S. K.
,
Zhang
,
L.-B.
, and
Zhao
,
J.-S.
,
2021
, “
Direct Measurements of the Wing Kinematics of a Bat in Straight Flight
,”
ASME J. Biomech. Eng.
,
143
(
4
), p. 041006.10.1115/1.4049161
47.
Riskin
,
D. K.
,
Bergou
,
A.
,
Breuer
,
K. S.
, and
Swartz
,
S. M.
,
2012
, “
Upstroke Wing Flexion and the Inertial Cost of Bat Flight
,”
Proc. R. Soc. B: Biol. Sci.
,
279
(
1740
), pp.
2945
2950
.10.1098/rspb.2012.0346
You do not currently have access to this content.