Abstract

In vitro simulation of three-dimensional (3D) shoulder motion using in vivo kinematics obtained from human subjects allows investigation of clinical conditions in the context of physiologically relevant biomechanics. Herein, we present a framework for laboratory simulation of subject-specific kinematics that combines individual 3D scapular and humeral control in cadavers. The objectives were to: (1) robotically simulate seven healthy subject-specific 3D scapulothoracic and glenohumeral kinematic trajectories in six cadavers, (2) characterize system performance using kinematic orientation accuracy and repeatability, and muscle force repeatability metrics, and (3) analyze effects of input kinematics and cadaver specimen variability. Using an industrial robot to orient the scapula range of motion (ROM), errors with repeatability of ±0.1 mm and <0.5 deg were achieved. Using a custom robot and a trajectory prediction algorithm to orient the humerus relative to the scapula, orientation accuracy for glenohumeral elevation, plane of elevation, and axial rotation of <3 deg mean absolute error (MAE) was achieved. Kinematic accuracy was not affected by varying input kinematics or cadaver specimens. Muscle forces over five repeated setups showed variability typically <33% relative to the overall simulations. Varying cadaver specimens and subject-specific human motions showed effects on muscle forces, illustrating that the system was capable of differentiating changes in forces due to input conditions. The anterior and middle deltoid, specifically, showed notable variations in patterns across the ROM that were affected by subject-specific motion. This machine provides a platform for future laboratory studies to investigate shoulder biomechanics and consider the impacts of variable input kinematics from populations of interest, as they can significantly impact study outputs and resultant conclusions.

References

1.
Lawrence
,
R. L.
,
Braman
,
J. P.
,
Staker
,
J. L.
,
Laprade
,
R. F.
, and
Ludewig
,
P. M.
,
2014
, “
Comparison of 3-Dimensional Shoulder Complex Kinematics in Individuals With and Without Shoulder Pain—Part 2: Glenohumeral Joint
,”
J. Orthop. Sports Phys. Ther.
,
44
(
9
), pp.
646
655
.10.2519/jospt.2014.5556
2.
Lawrence
,
R. L.
,
Braman
,
J. P.
,
Laprade
,
R. F.
, and
Ludewig
,
P. M.
,
2014
, “
Comparison of 3-Dimensional Shoulder Complex Kinematics in Individuals With and Without Shoulder Pain—Part 1: Sternoclavicular, Acromioclavicular, and Scapulothoracic Joints
,”
J. Orthop. Sports Phys. Ther.
,
44
(
9
), pp.
636
645
.10.2519/jospt.2014.5339
3.
Ludewig
,
P. M.
,
Phadke
,
V.
,
Braman
,
J. P.
,
Hassett
,
D. R.
,
Cieminski
,
C. J.
, and
LaPrade
,
R. F.
,
2009
, “
Motion of the Shoulder Complex During Multiplanar Humeral Elevation
,”
J. Bone Jt. Surg. Am.
,
91
(
2
), pp.
378
389
.10.2106/JBJS.G.01483
4.
Vredenburgh
,
Z. D.
,
Prodromo
,
J. P.
,
Tibone
,
J. E.
,
Dunphy
,
T. R.
,
Weber
,
J.
,
McGarry
,
M. H.
,
Chae
,
S.
,
Adamson
,
G. J.
, and
Lee
,
T. Q.
,
2021
, “
Biomechanics of Tensor Fascia Lata Allograft for Superior Capsular Reconstruction
,”
J. Shoulder Elbow Surg.
,
30
(
1
), pp.
178
187
.10.1016/j.jse.2020.04.025
5.
Thompson
,
S. M.
,
Prinold
,
J. A. I.
,
Hill
,
A. M.
,
Reilly
,
P.
,
Emery
,
R. J. H.
, and
Bull
,
A. M. J.
,
2019
, “
The Influence of Full-Thickness Supraspinatus Tears on Abduction Moments: The Importance of the Central Tendon
,”
Shoulder Elbow
,
11
(
1_suppl
.), pp.
19
25
.10.1177/1758573217717104
6.
Ferle
,
M.
,
Pastor
,
M. F.
,
Hagenah
,
J.
,
Hurschler
,
C.
, and
Smith
,
T.
,
2019
, “
Effect of the Humeral Neck-Shaft Angle and Glenosphere Lateralization on Stability of Reverse Shoulder Arthroplasty: A Cadaveric Study
,”
J. Shoulder Elbow Surg.
,
28
(
5
), pp.
966
973
.10.1016/j.jse.2018.10.025
7.
Lempereur
,
M.
,
Brochard
,
S.
,
Leboeuf
,
F.
, and
Rémy-Néris
,
O.
,
2014
, “
Validity and Reliability of 3D Marker Based Scapular Motion Analysis: A Systematic Review
,”
J. Biomech.
,
47
(
10
), pp.
2219
2230
.10.1016/j.jbiomech.2014.04.028
8.
Navarro-Ledesma
,
S.
,
Fernandez-Sanchez
,
M.
,
Struyf
,
F.
,
Martinez-Calderon
,
J.
,
Miguel Morales-Asencio
,
J.
, and
Luque-Suarez
,
A.
,
2019
, “
Differences in Scapular Upward Rotation, Pectoralis Minor and Levator Scapulae Muscle Length Between the Symptomatic, the Contralateral Asymptomatic Shoulder and Control Subjects: A Cross-Sectional Study in a Spanish Primary Care Setting
,”
BMJ Open
,
9
(
6
), p.
e023020
.10.1136/bmjopen-2018-023020
9.
De Baets
,
L.
,
Jaspers
,
E.
,
Desloovere
,
K.
, and
Van Deun
,
S.
,
2013
, “
A Systematic Review of 3D Scapular Kinematics and Muscle Activity During Elevation in Stroke Subjects and Controls
,”
J. Electromyogr. Kinesiol.
,
23
(
1
), pp.
3
13
.10.1016/j.jelekin.2012.06.007
10.
Zdravkovic
,
V.
,
Alexander
,
N.
,
Wegener
,
R.
,
Spross
,
C.
, and
Jost
,
B.
,
2020
, “
How Do Scapulothoracic Kinematics During Shoulder Elevation Differ Between Adults With and Without Rotator Cuff Arthropathy?
,”
Clin. Orthop. Relat. Res.
,
478
(
11
), pp.
2640
2649
.10.1097/CORR.0000000000001406
11.
Ueda
,
Y.
,
Tanaka
,
H.
,
Morioka
,
S.
,
Tachibana
,
T.
,
Hayashi
,
T.
,
Ichihashi
,
N.
,
Inui
,
H.
, and
Nobuhara
,
K.
,
2019
, “
Comparison of Scapular Upward Rotation During Arm Elevation in the Scapular Plane in Healthy Volunteers and Patients With Rotator Cuff Tears Pre- and Post-Surgery
,”
Clin. Biomech.
,
63
, pp.
207
213
.10.1016/j.clinbiomech.2019.03.012
12.
Walker
,
D.
,
Matsuki
,
K.
,
Struk
,
A. M.
,
Wright
,
T. W.
, and
Banks
,
S. A.
,
2015
, “
Scapulohumeral Rhythm in Shoulders With Reverse Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
24
(
7
), pp.
1129
1134
.10.1016/j.jse.2014.11.043
13.
Lefevre-Colau
,
M. M.
,
Nguyen
,
C.
,
Palazzo
,
C.
,
Srour
,
F.
,
Paris
,
G.
,
Vuillemin
,
V.
,
Poiraudeau
,
S.
,
Roby-Brami
,
A.
, and
Roren
,
A.
,
2018
, “
Recent Advances in Kinematics of the Shoulder Complex in Healthy People
,”
Ann. Phys. Rehabil. Med.
,
61
(
1
), pp.
56
59
.10.1016/j.rehab.2017.09.001
14.
Lefevre-Colau
,
M. M.
,
Nguyen
,
C.
,
Palazzo
,
C.
,
Srour
,
F.
,
Paris
,
G.
,
Vuillemin
,
V.
,
Poiraudeau
,
S.
,
Roby-Brami
,
A.
, and
Roren
,
A.
,
2018
, “
Kinematic Patterns in Normal and Degenerative Shoulders—Part II: Review of 3-D Scapular Kinematic Patterns in Patients With Shoulder Pain, and Clinical Implications
,”
Ann. Phys. Rehabil. Med.
,
61
(
1
), pp.
46
53
.10.1016/j.rehab.2017.09.002
15.
Vidt
,
M. E.
,
Santago
,
A. C.
, 2nd
,
Marsh
,
A. P.
,
Hegedus
,
E. J.
,
Tuohy
,
C. J.
,
Poehling
,
G. G.
,
Freehill
,
M. T.
,
Miller
,
M. E.
, and
Saul
,
K. R.
,
2018
, “
Modeling a Rotator Cuff Tear: Individualized Shoulder Muscle Forces Influence Glenohumeral Joint Contact Force Predictions
,”
Clin. Biomech.
,
60
, pp.
20
29
.10.1016/j.clinbiomech.2018.10.004
16.
Stollenmaier
,
K.
,
Ilg
,
W.
, and
Haeufle
,
D. F. B.
,
2020
, “
Predicting Perturbed Human Arm Movements in a Neuro-Musculoskeletal Model to Investigate the Muscular Force Response
,”
Front. Bioeng. Biotechnol.
,
8
, p.
308
.10.3389/fbioe.2020.00308
17.
Reeves
,
J. M.
,
Singh
,
S.
,
Langohr
,
G. D. G.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2020
, “
An In-Vitro Biomechanical Assessment of Humeral Head Migration Following Irreparable Rotator Cuff Tear and Subacromial Balloon Reconstruction
,”
Shoulder Elbow
,
12
(
4
), pp.
265
271
.10.1177/1758573219865479
18.
Kaar
,
S. G.
,
Fening
,
S. D.
,
Jones
,
M. H.
,
Colbrunn
,
R. W.
, and
Miniaci
,
A.
,
2010
, “
Effect of Humeral Head Defect Size on Glenohumeral Stability: A Cadaveric Study of Simulated Hill-Sachs Defects
,”
Am. J. Sports Med.
,
38
(
3
), pp.
594
599
.10.1177/0363546509350295
19.
Bokshan
,
S. L.
,
DeFroda
,
S. F.
,
Gil
,
J. A.
,
Badida
,
R.
,
Crisco
,
J. J.
, and
Owens
,
B. D.
,
2019
, “
The 6-O'clock Anchor Increases Labral Repair Strength in a Biomechanical Shoulder Instability Model
,”
Arthroscopy
,
35
(
10
), pp.
2795
2800
.10.1016/j.arthro.2019.05.012
20.
Wermers
,
J.
,
Schliemann
,
B.
,
Raschke
,
M. J.
,
Michel
,
P. A.
,
Heilmann
,
L. F.
,
Dyrna
,
F.
,
Sußiek
,
J.
,
Frank
,
A.
, and
Katthagen
,
J. C.
,
2021
, “
Glenoid Concavity Has a Higher Impact on Shoulder Stability Than the Size of a Bony Defect
,”
Knee Surg. Sports Traumatol. Arthroscopy
,
29
(
8
), pp.
2631
2639
.10.1007/s00167-021-06562-3
21.
Henninger
,
H. B.
,
Barg
,
A.
,
Anderson
,
A. E.
,
Bachus
,
K. N.
,
Tashjian
,
R. Z.
, and
Burks
,
R. T.
,
2012
, “
Effect of Deltoid Tension and Humeral Version in Reverse Total Shoulder Arthroplasty: A Biomechanical Study
,”
J. Shoulder Elbow Surg.
,
21
(
4
), pp.
483
490
.10.1016/j.jse.2011.01.040
22.
Giles
,
J. W.
,
Ferreira
,
L. M.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2014
, “
Development and Performance Evaluation of a Multi-PID Muscle Loading Driven In Vitro Active-Motion Shoulder Simulator and Application to Assessing Reverse Total Shoulder Arthroplasty
,”
ASME J. Biomech. Eng.
,
136
(
12
), p.
121007
.10.1115/1.4028820
23.
Muth
,
S.
,
Barbe
,
M. F.
,
Lauer
,
R.
, and
McClure
,
P. W.
,
2012
, “
The Effects of Thoracic Spine Manipulation in Subjects With Signs of Rotator Cuff Tendinopathy
,”
J. Orthop. Sports Phys. Ther.
,
42
(
12
), pp.
1005
1016
.10.2519/jospt.2012.4142
24.
Fayad
,
F.
,
Roby-Brami
,
A.
,
Yazbeck
,
C.
,
Hanneton
,
S.
,
Lefevre-Colau
,
M. M.
,
Gautheron
,
V.
,
Poiraudeau
,
S.
, and
Revel
,
M.
,
2008
, “
Three-Dimensional Scapular Kinematics and Scapulohumeral Rhythm in Patients With Glenohumeral Osteoarthritis or Frozen Shoulder
,”
J. Biomech.
,
41
(
2
), pp.
326
332
.10.1016/j.jbiomech.2007.09.004
25.
Roren
,
A.
,
Lefevre-Colau
,
M. M.
,
Roby-Brami
,
A.
,
Revel
,
M.
,
Fermanian
,
J.
,
Gautheron
,
V.
,
Poiraudeau
,
S.
, and
Fayad
,
F.
,
2012
, “
Modified 3D Scapular Kinematic Patterns for Activities of Daily Living in Painful Shoulders With Restricted Mobility: A Comparison With Contralateral Unaffected Shoulders
,”
J. Biomech.
,
45
(
7
), pp.
1305
1311
.10.1016/j.jbiomech.2012.01.027
26.
Flores-Hernandez
,
C.
,
Eskinazi
,
I.
,
Hoenecke
,
H. R.
, and
D'Lima
,
D. D.
,
2019
, “
Scapulothoracic Rhythm Affects Glenohumeral Joint Force
,”
JSES Open Access
,
3
(
2
), pp.
77
82
.10.1016/j.jses.2019.03.004
27.
Kolz
,
C. W.
,
Sulkar
,
H. J.
,
Aliaj
,
K.
,
Tashjian
,
R. Z.
,
Chalmers
,
P. N.
,
Qiu
,
Y.
,
Zhang
,
Y.
,
Bo Foreman
,
K.
,
Anderson
,
A. E.
, and
Henninger
,
H. B.
,
2021
, “
Age-Related Differences in Humerothoracic, Scapulothoracic, and Glenohumeral Kinematics During Elevation and Rotation Motions
,”
J. Biomech.
,
117
, p.
110266
.10.1016/j.jbiomech.2021.110266
28.
Abdulla
,
I.
,
Langohr
,
D. G.
,
Giles
,
J. W.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2018
, “
The Effect of Humeral Polyethylene Insert Constraint on Reverse Shoulder Arthroplasty Biomechanics
,”
Shoulder Elbow
,
10
(
1
), pp.
25
31
.10.1177/1758573217701065
29.
Ackland
,
D. C.
,
Wu
,
W.
,
Thomas
,
R.
,
Patel
,
M.
,
Page
,
R.
,
Sangeux
,
M.
, and
Richardson
,
M.
,
2019
, “
Muscle and Joint Function After Anatomic and Reverse Total Shoulder Arthroplasty Using a Modular Shoulder Prosthesis
,”
J. Orthop Res.
,
37
(
9
), pp.
1988
2003
.10.1002/jor.24335
30.
Chan
,
K.
,
Langohr
,
G. D. G.
,
Mahaffy
,
M.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2017
, “
Does Humeral Component Lateralization in Reverse Shoulder Arthroplasty Affect Rotator Cuff Torque? Evaluation in a Cadaver Model
,”
Clin. Orthop. Relat. Res.
,
475
(
10
), pp.
2564
2571
.10.1007/s11999-017-5413-7
31.
Giles
,
J. W.
,
Langohr
,
G. D.
,
Johnson
,
J. A.
, and
Athwal
,
G. S.
,
2016
, “
The Rotator Cuff Muscles Are Antagonists After Reverse Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
25
(
10
), pp.
1592
1600
.10.1016/j.jse.2016.02.028
32.
Hansen
,
M. L.
,
Nayak
,
A.
,
Narayanan
,
M. S.
,
Worhacz
,
K.
,
Stowell
,
R.
,
Jacofsky
,
M. C.
, and
Roche
,
C. P.
,
2015
, “
Role of Subscapularis Repair on Muscle Force Requirements With Reverse Shoulder Arthroplasty
,”
Bull. Hosp. Jt. Dis.
,
73
(
Suppl. 1
), pp.
S21
–S
27
.https://www.researchgate.net/publication/287208333_Role_of_Subscapularis_Repair_on_Muscle_Force_Requirements_with_Reverse_Shoulder_Arthroplasty
33.
Onstot
,
B. R.
,
Jacofsky
,
M. C.
, and
Hansen
,
M. L.
,
2013
, “
Muscle Force and Excursion Requirements and Moment Arm Analysis of a Posterior-Superior Offset Reverse Total Shoulder Prosthesis
,”
Bull. Hosp. Jt. Dis.
,
71
(
Suppl. 2
), pp.
S25
S30
.https://pubmed.ncbi.nlm.nih.gov/24328576/
34.
Nolte
,
P. C.
,
Miles
,
J. W.
,
Tanghe
,
K. K.
,
Brady
,
A. W.
,
Midtgaard
,
K. S.
,
Cooper
,
J. D.
,
Lacheta
,
L.
,
Provencher
,
M. T.
, and
Millett
,
P. J.
,
2021
, “
The Effect of Glenosphere Lateralization and Inferiorization on Deltoid Force in Reverse Total Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
30
(
8
), pp.
1817
1826
.10.1016/j.jse.2020.10.038
35.
Ackland
,
D. C.
,
Robinson
,
D. L.
,
Wilkosz
,
A.
,
Wu
,
W.
,
Richardson
,
M.
,
Lee
,
P.
, and
Tse
,
K. M.
,
2019
, “
The Influence of Rotator Cuff Tears on Muscle and Joint-Contact Loading After Reverse Total Shoulder Arthroplasty
,”
J. Orthop. Res.
,
37
(
1
), pp.
211
219
.10.1002/jor.24152
36.
Liou
,
W.
,
Yang
,
Y.
,
Petersen-Fitts
,
G. R.
,
Lombardo
,
D. J.
,
Stine
,
S.
, and
Sabesan
,
V. J.
,
2017
, “
Effect of Lateralized Design on Muscle and Joint Reaction Forces for Reverse Shoulder Arthroplasty
,”
J. Shoulder Elbow Surg.
,
26
(
4
), pp.
564
572
.10.1016/j.jse.2016.09.045
37.
Wong
,
M. T.
,
Langohr
,
G. D. G.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2016
, “
Implant Positioning in Reverse Shoulder Arthroplasty Has an Impact on Acromial Stresses
,”
J. Shoulder Elbow Surg.
,
25
(
11
), pp.
1889
1895
.10.1016/j.jse.2016.04.011
38.
Debski
,
R. E.
,
Wong
,
E. K.
,
Woo
,
S. L.
,
Sakane
,
M.
,
Fu
,
F. H.
, and
Warner
,
J. J.
,
1999
, “
In Situ Force Distribution in the Glenohumeral Joint Capsule During Anterior-Posterior Loading
,”
J. Orthop. Res.
,
17
(
5
), pp.
769
776
.10.1002/jor.1100170523
39.
Kedgley
,
A. E.
,
Mackenzie
,
G. A.
,
Ferreira
,
L. M.
,
Drosdowech
,
D. S.
,
King
,
G. J.
,
Faber
,
K. J.
, and
Johnson
,
J. A.
,
2007
, “
The Effect of Muscle Loading on the Kinematics of In Vitro Glenohumeral Abduction
,”
J. Biomech.
,
40
(
13
), pp.
2953
2960
.10.1016/j.jbiomech.2007.02.008
40.
Wu
,
G.
,
van der Helm
,
F. C.
,
Veeger
,
H. E.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion—Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
41.
De Wilde
,
L. F.
,
Verstraeten
,
T.
,
Speeckaert
,
W.
, and
Karelse
,
A.
,
2010
, “
Reliability of the Glenoid Plane
,”
J. Shoulder Elbow Surg.
,
19
(
3
), pp.
414
422
.10.1016/j.jse.2009.10.005
42.
Kolz
,
C. W.
,
Sulkar
,
H. J.
,
Aliaj
,
K.
,
Tashjian
,
R. Z.
,
Chalmers
,
P. N.
,
Qiu
,
Y.
,
Zhang
,
Y.
,
Foreman
,
K. B.
,
Anderson
,
A. E.
, and
Henninger
,
H. B.
,
2020
, “
Reliable Interpretation of Scapular Kinematics Depends on Coordinate System Definition
,”
Gait Posture
,
81
, pp.
183
190
.10.1016/j.gaitpost.2020.07.020
43.
Karns
,
M. R.
,
Jacxsens
,
M.
,
Uffmann
,
W. J.
,
Todd
,
D. C.
,
Henninger
,
H. B.
, and
Burks
,
R. T.
,
2018
, “
The Critical Acromial Point: The Anatomic Location of the Lateral Acromion in the Critical Shoulder Angle
,”
J. Shoulder Elbow Surg.
,
27
(
1
), pp.
151
159
.10.1016/j.jse.2017.08.025
44.
Suter
,
T.
,
Kolz
,
C. W.
,
Tashjian
,
R. Z.
,
Henninger
,
H. B.
, and
Popp
,
A. G.
,
2017
, “
Humeral Head Osteotomy in Shoulder Arthroplasty: A Comparison Between Anterosuperior and Inferoanterior Resection Techniques
,”
J. Shoulder Elbow Surg.
,
26
(
2
), pp.
343
351
.10.1016/j.jse.2016.07.010
45.
Pratt
,
N. E.
,
1994
, “
Anatomy and Biomechanics of the Shoulder
,”
J. Hand Ther.
,
7
(
2
), pp.
65
76
.10.1016/S0894-1130(12)80074-3
46.
Wuelker
,
N.
,
Wirth
,
C. J.
,
Plitz
,
W.
, and
Roetman
,
B.
,
1995
, “
A Dynamic Shoulder Model: Reliability Testing and Muscle Force Study
,”
J. Biomech.
,
28
(
5
), pp.
489
499
.10.1016/0021-9290(94)E0006-O
47.
Hurschler
,
C.
,
Wulker
,
N.
, and
Mendila
,
M.
,
2000
, “
The Effect of Negative Intraarticular Pressure and Rotator Cuff Force on Glenohumeral Translation During Simulated Active Elevation
,”
Clin. Biomech.
,
15
(
5
), pp.
306
314
.10.1016/S0268-0033(99)00088-1
48.
Hansen
,
M. L.
,
Otis
,
J. C.
,
Johnson
,
J. S.
,
Cordasco
,
F. A.
,
Craig
,
E. V.
, and
Warren
,
R. F.
,
2008
, “
Biomechanics of Massive Rotator Cuff Tears: Implications for Treatment
,”
J. Bone Jt. Surg. Am.
,
90
(
2
), pp.
316
325
.10.2106/JBJS.F.00880
49.
Aliaj
,
K.
,
Feeney
,
G. M.
,
Sundaralingam
,
B.
,
Hermans
,
T.
,
Foreman
,
K. B.
,
Bachus
,
K. N.
, and
Henninger
,
H. B.
,
2020
, “
Replicating Dynamic Humerus Motion Using an Industrial Robot
,”
PLoS One
,
15
(
11
), p.
e0242005
.10.1371/journal.pone.0242005
50.
Chalmers
,
P. N.
,
Suter
,
T.
,
Jacxsens
,
M.
,
Zhang
,
Y.
,
Zhang
,
C.
,
Tashjian
,
R. Z.
, and
Henninger
,
H. B.
,
2019
, “
Influence of Radiographic Viewing Perspective on Glenoid Inclination Measurement
,”
J. Shoulder Elbow Arthroplasty
,
3
(
1
), pp.
1
8
.10.1177/2471549218824986
51.
Hertel
,
R.
,
Knothe
,
U.
, and
Ballmer
,
F. T.
,
2002
, “
Geometry of the Proximal Humerus and Implications for Prosthetic Design
,”
J. Shoulder Elbow Surg.
,
11
(
4
), pp.
331
338
.10.1067/mse.2002.124429
52.
Moor
,
B. K.
,
Bouaicha
,
S.
,
Rothenfluh
,
D. A.
,
Sukthankar
,
A.
, and
Gerber
,
C.
,
2013
, “
Is There an Association Between the Individual Anatomy of the Scapula and the Development of Rotator Cuff Tears or Osteoarthritis of the Glenohumeral Joint?: A Radiological Study of the Critical Shoulder Angle
,”
Bone Jt. J.
,
95B
(
7
), pp.
935
941
.10.1302/0301-620X.95B7.31028
53.
Suter
,
T.
,
Gerber Popp
,
A.
,
Zhang
,
Y.
,
Zhang
,
C.
,
Tashjian
,
R. Z.
, and
Henninger
,
H. B.
,
2015
, “
The Influence of Radiographic Viewing Perspective and Demographics on the Critical Shoulder Angle
,”
J. Shoulder Elbow Surg.
,
24
(
6
), pp.
e149
e158
.10.1016/j.jse.2014.10.021
54.
Shah
,
D. S.
,
Middleton
,
C.
,
Gurdezi
,
S.
,
Horwitz
,
M. D.
, and
Kedgley
,
A. E.
,
2017
, “
The Effects of Wrist Motion and Hand Orientation on Muscle Forces: A Physiologic Wrist Simulator Study
,”
J. Biomech.
,
60
, pp.
232
237
.10.1016/j.jbiomech.2017.06.017
55.
Vijayakumar
,
S.
, and
Schaal
,
S.
,
2000
, “
Locally Weighted Projection Regression: An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space
,” 17th International Conference on Machine Learning (
ICML2000
),
P.
Langley
, ed., Stanford University, Stanford, CA, June 29–July 2,
Morgan Kaufmann Publishers
,
Stanford, CA
, pp.
1079
1086
.https://homepages.inf.ed.ac.uk/svijayak/publications/vijayakumar-ICML2000.pdf
56.
Vijayakumar
,
S.
,
D'Souza
,
A.
, and
Schaal
,
S.
,
2005
, “
Incremental Online Learning in High Dimensions
,”
Neural Comput.
,
17
(
12
), pp.
2602
2634
.10.1162/089976605774320557
57.
Baumgartner
,
D.
,
Tomas
,
D.
,
Gossweiler
,
L.
,
Siegl
,
W.
,
Osterhoff
,
G.
, and
Heinlein
,
B.
,
2014
, “
Towards the Development of a Novel Experimental Shoulder Simulator With Rotating Scapula and Individually Controlled Muscle Forces Simulating the Rotator Cuff
,”
Med. Biol. Eng. Comput.
,
52
(
3
), pp.
293
299
.10.1007/s11517-013-1120-z
58.
Bohnsack
,
M.
,
Bartels
,
B.
,
Ostermeier
,
S.
,
Ruhmann
,
O.
,
Wellmann
,
M.
,
Mansouri
,
F.
, and
Hurschler
,
C.
,
2009
, “
Biomechanical Stability of an Arthroscopic Anterior Capsular Shift and Suture Anchor Repair in Anterior Shoulder Instability: A Human Cadaveric Shoulder Model
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
17
(
12
), pp.
1493
1499
.10.1007/s00167-009-0843-8
59.
Noble
,
L. D.
, Jr.
,
Colbrunn
,
R. W.
,
Lee
,
D. G.
,
van den Bogert
,
A. J.
, and
Davis
,
B. L.
,
2010
, “
Design and Validation of a General Purpose Robotic Testing System for Musculoskeletal Applications
,”
ASME J. Biomech. Eng.
,
132
(
2
), p.
025001
.10.1115/1.4000851
60.
Debski
,
R. E.
,
McMahon
,
P. J.
,
Thompson
,
W. O.
,
Woo
,
S. L.
,
Warner
,
J. J.
, and
Fu
,
F. H.
,
1995
, “
A New Dynamic Testing Apparatus to Study Glenohumeral Joint Motion
,”
J. Biomech.
,
28
(
7
), pp.
869
874
.10.1016/0021-9290(95)95276-B
61.
Rosso
,
C.
,
Mueller
,
A. M.
,
McKenzie
,
B.
,
Entezari
,
V.
,
Cereatti
,
A.
,
Della Croce
,
U.
,
Ramappa
,
A. J.
,
Nazarian
,
A.
, and
DeAngelis
,
J. P.
,
2014
, “
Bulk Effect of the Deltoid Muscle on the Glenohumeral Joint
,”
J. Exp. Orthop.
,
1
(
1
), p.
14
.10.1186/s40634-014-0014-9
62.
Kedgley
,
A. E.
,
Mackenzie
,
G. A.
,
Ferreira
,
L. M.
,
Drosdowech
,
D. S.
,
King
,
G. J.
,
Faber
,
K. J.
, and
Johnson
,
J. A.
,
2008
, “
Humeral Head Translation Decreases With Muscle Loading
,”
J. Shoulder Elbow Surg.
,
17
(
1
), pp.
132
138
.10.1016/j.jse.2007.03.021
63.
Matsuki
,
K.
,
Kenmoku
,
T.
,
Ochiai
,
N.
,
Sugaya
,
H.
, and
Banks
,
S. A.
,
2016
, “
Differences in Glenohumeral Translations Calculated With Three Methods: Comparison of Relative Positions and Contact Point
,”
J. Biomech.
,
49
(
9
), pp.
1944
1947
.10.1016/j.jbiomech.2016.03.042
64.
Oizumi
,
N.
,
Tadano
,
S.
,
Narita
,
Y.
,
Suenaga
,
N.
,
Iwasaki
,
N.
, and
Minami
,
A.
,
2006
, “
Numerical Analysis of Cooperative Abduction Muscle Forces in a Human Shoulder Joint
,”
J. Shoulder Elbow Surg.
,
15
(
3
), pp.
331
338
.10.1016/j.jse.2005.08.012
65.
van der Helm
,
F. C.
,
1994
, “
A Finite Element Musculoskeletal Model of the Shoulder Mechanism
,”
J. Biomech.
,
27
(
5
), pp.
551
569
.10.1016/0021-9290(94)90065-5
66.
Roetman
,
B.
,
Wuelker
,
N.
, and
Plitz
,
W.
,
1996
, “
A Dynamic Shoulder Model for Biomechanical Measurements of Shoulder Specimen
,”
Biomed. Tech.
,
41
(
12
), pp.
359
363
.10.1515/bmte.1996.41.12.359
67.
Wuelker
,
N.
,
Korell
,
M.
, and
Thren
,
K.
,
1998
, “
Dynamic Glenohumeral Joint Stability
,”
J. Shoulder Elbow Surg.
,
7
(
1
), pp.
43
52
.10.1016/S1058-2746(98)90182-3
68.
Aurbach
,
M.
,
Spicka
,
J.
,
Süß
,
F.
, and
Dendorfer
,
S.
,
2020
, “
Evaluation of Musculoskeletal Modelling Parameters of the Shoulder Complex During Humeral Abduction Above 90 Degrees
,”
J. Biomech.
,
106
, p.
109817
.10.1016/j.jbiomech.2020.109817
69.
Nikooyan
,
A. A.
,
Veeger
,
H. E.
,
Westerhoff
,
P.
,
Graichen
,
F.
,
Bergmann
,
G.
, and
van der Helm
,
F. C.
,
2010
, “
Validation of the Delft Shoulder and Elbow Model Using In-Vivo Glenohumeral Joint Contact Forces
,”
J. Biomech.
,
43
(
15
), pp.
3007
3014
.10.1016/j.jbiomech.2010.06.015
70.
Cherchi
,
L.
,
Ciornohac
,
J. F.
,
Godet
,
J.
,
Clavert
,
P.
, and
Kempf
,
J. F.
,
2016
, “
Critical Shoulder Angle: Measurement Reproducibility and Correlation With Rotator Cuff Tendon Tears
,”
Orthop. Traumatol. Surg. Res.
,
102
(
5
), pp.
559
562
.10.1016/j.otsr.2016.03.017
71.
Kian
,
A.
,
Pizzolato
,
C.
,
Halaki
,
M.
,
Ginn
,
K.
,
Lloyd
,
D.
,
Reed
,
D.
, and
Ackland
,
D.
,
2019
, “
Static Optimization Underestimates Antagonist Muscle Activity at the Glenohumeral Joint: A Musculoskeletal Modeling Study
,”
J. Biomech.
,
97
, p.
109348
.10.1016/j.jbiomech.2019.109348
72.
Krishnan
,
R.
,
Bjorsell
,
N.
,
Gutierrez-Farewik
,
E. M.
, and
Smith
,
C.
,
2019
, “
A Survey of Human Shoulder Functional Kinematic Representations
,”
Med. Biol. Eng. Comput.
,
57
(
2
), pp.
339
367
.10.1007/s11517-018-1903-3
You do not currently have access to this content.