Abstract

Blast-induced traumatic brain injury (bTBI) research is crucial in asymmetric warfare. The finite element analysis is an attractive option to simulate the blast wave interaction with the head. The popular blast simulation methods are ConWep-based pure Lagrangian, Arbitrary–Lagrangian–Eulerian, and coupling method. This study examines the accuracy and efficiency of ConWep and coupling methods in predicting the biomechanical response of the head. The simplified cylindrical, spherical surrogates and biofidelic human head models are subjected to field-relevant blast loads using these methods. The reflected overpressures at the surface and pressures inside the brain from the head models are qualitatively and quantitatively evaluated against the available experiments. Both methods capture the overall trends of experiments. Our results suggest that the accuracy of the ConWep method is mainly governed by the radius of curvature of the surrogate head. For the relatively smaller radius of curvature, such as cylindrical or spherical head surrogate, ConWep does not accurately capture decay of reflected blast overpressures and brain pressures. For the larger radius of curvature, such as the biofidelic human head, the predictions from ConWep match reasonably well with the experiment. For all the head surrogates considered, the reflected overpressure-time histories predicted by the coupling method match reasonably well with the experiment. Coupling method uniquely captures the shadowing and union of shock waves governed by the geometry-driven flow dynamics around the head. Overall, these findings will assist the bTBI modeling community to judiciously select an objective-driven modeling methodology.

References

1.
Hyder
,
A.
,
Wunderlich
,
C.
,
Puvanachandra
,
P.
,
Gururaj
,
G.
, and
Kobusingye
,
O.
,
2007
, “
The Impact of Traumatic Brain Injuries: A Global Perspective
,”
NeuroRehabilitation
,
22
(
5
), pp.
341
353
.10.3233/NRE-2007-22502
2.
Wilk
,
J. E.
,
Thomas
,
J. L.
,
McGurk
,
D. M.
,
Riviere
,
L. A.
,
Castro
,
C. A.
, and
Hoge
,
C. W.
,
2010
, “
Mild Traumatic Brain Injury (Concussion) During Combat: Lack of Association of Blast Mechanism With Persistent Postconcussive Symptoms
,”
J. Head Trauma Rehabil.
,
25
(
1
), pp.
9
14
.10.1097/HTR.0b013e3181bd090f
3.
Owens
,
B. D.
,
Kragh
,
J. F.
,
Wenke
,
J. C.
,
Macaitis
,
J.
,
Wade
,
C. E.
, and
Holcomb
,
J. B.
,
2008
, “
Combat Wounds in Operation Iraqi Freedom and Operation Enduring Freedom
,”
J. Trauma Inj. Infect. Crit. Care
,
64
(
2
), pp.
295
299
.10.1097/TA.0b013e318163b875
4.
Chin
,
D. L.
, and
Zeber
,
J. E.
,
2019
, “
Mental Health Outcomes Among Military Service Members After Severe Injury in Combat and TBI
,”
Mil. Med.
, pp.
26
28
.10.1093/milmed/usz44
5.
Hoge
,
C. W.
,
McGurk
,
D.
,
Thomas
,
J. L.
,
Cox
,
A. L.
,
Engel
,
C. C.
, and
Castro
,
C. A.
,
2008
, “
Mild Traumatic Brain Injury in U.S. Soldiers Returning From Iraq
,”
N. Engl. J. Med.
,
358
(
5
), pp.
453
463
.10.1056/NEJMoa072972
6.
Fievisohn
,
E.
,
Bailey
,
Z.
,
Guettler
,
A.
, and
Vandevord
,
P.
,
2018
, “
Primary Blast Brain Injury Mechanisms: Current Knowledge, Limitations, and Future Directions
,”
ASME J. Biomech. Eng.
,
140
(
2
), p. 020806.10.1115/1.4038710
7.
Bass
,
C. R.
,
Panzer
,
M. B.
,
Rafaels
,
K. A.
,
Wood
,
G.
,
Shridharani
,
J.
, and
Capehart
,
B.
,
2012
, “
Brain Injuries From Blast
,”
Ann. Biomed. Eng.
,
40
(
1
), pp.
185
202
.10.1007/s10439-011-0424-0
8.
Courtney
,
A.
, and
Courtney
,
M.
,
2015
, “
The Complexity of Biomechanics Causing Primary Blast-Induced Traumatic Brain Injury: A Review of Potential Mechanisms
,”
Front. Neurol.
,
6
, pp.
1
12
.10.3389/fneur.2015.00221
9.
Sundaramurthy
,
A.
,
Alai
,
A.
,
Ganpule
,
S.
,
Holmberg
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2012
, “
Blast-Induced Biomechanical Loading of the Rat: An Experimental and Anatomically Accurate Computational Blast Injury Model
,”
J. Neurotrauma
,
29
(
13
), pp.
2352
2364
.10.1089/neu.2012.2413
10.
Dal Cengio Leonardi
,
A.
,
Bir
,
C. A.
,
Ritzel
,
D. V.
, and
VandeVord
,
P. J.
,
2011
, “
Intracranial Pressure Increases During Exposure to a Shock Wave
,”
J. Neurotrauma
,
28
(
1
), pp.
85
94
.10.1089/neu.2010.1324
11.
Bir
,
C.
,
2011
, “
Measuring Blast-Related Intracranial Pressure Within the Human Head
,” U.S. Army Medical Research and Materiel Command, Final Report, Award No. W81XWH-09-1-0498.https://www.researchgate.net/publication/235028515_Measuring_Blast-Related_Intracranial_Pressure_Within_the_Human_Head
12.
Iwaskiw
,
A. S.
,
Ott
,
K. A.
,
Armiger
,
R. S.
,
Wickwire
,
A. C.
,
Alphonse
,
V. D.
,
Voo
,
L. M.
,
Carneal
,
C. M.
, and
Merkle
,
A. C.
,
2018
, “
The Measurement of Intracranial Pressure and Brain Displacement Due to Short-Duration Dynamic Overpressure Loading
,”
Shock Waves
,
28
(
1
), pp.
63
83
.10.1007/s00193-017-0759-z
13.
Selvan
,
V.
,
Ganpule
,
S.
,
Kleinschmit
,
N.
, and
Chandra
,
N.
,
2013
, “
Blast Wave Loading Pathways in Heterogeneous Material Systems-Experimental and Numerical Approaches
,”
ASME J. Biomech. Eng.
,
135
(
6
), p.
061002
.10.1115/1.4024132
14.
Hua
,
Y.
,
Kumar Akula
,
P.
,
Gu
,
L.
,
Berg
,
J.
, and
Nelson
,
C. A.
,
2014
, “
Experimental and Numerical Investigation of the Mechanism of Blast Wave Transmission Through a Surrogate Head
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
031010
.10.1115/1.4026156
15.
Ouellet
,
S.
, and
Philippens
,
M.
,
2018
, “
The Multi-Modal Responses of a Physical Head Model Subjected to Various Blast Exposure Conditions
,”
Shock Waves
,
28
(
1
), pp.
19
36
.10.1007/s00193-017-0771-3
16.
Needham
,
C. E.
,
Ritzel
,
D.
,
Rule
,
G. T.
,
Wiri
,
S.
, and
Young
,
L.
,
2015
, “
Blast Testing Issues and TBI: Experimental Models That Lead to Wrong Conclusions
,”
Front. Neurol.
,
6
, pp.
2
11
.10.3389/fneur.2015.00072
17.
Sutar
,
S.
, and
Ganpule
,
S.
,
2020
, “
Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for TBI Studies
,”
J. Neurotrauma
,
13
, pp.
1
13
.10.1089/neu.2020.7394
18.
Kingery
,
C. N.
, and
Bulmash
,
G.
,
1984
, “
Airblast Parameters From TNT Spherical Air Burst and Hemispherical Surface Burst
,” U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, Report No. ARBRLTR-02555.
19.
Hyde
,
D.
,
2004
,
CONWEP 2.1. 0.8, Conventional Weapons Effects Program
,
U.S. Army Engineer Research and Development Center
,
Vicksburg, MS
.
20.
Bakroon
,
M.
,
Daryaei
,
R.
,
Aubram
,
D.
, and
Rackwitz
,
F.
,
2019
, “
Multi-Material Arbitrary Lagrangian-Eulerian and Coupled Eulerian-Lagrangian Methods for Large Deformation Geotechnical Problems
,”
Numer. Methods Geotech. Eng.
, 1, pp.
673
681
.https://www.researchgate.net/publication/326606521_Multi-Material_Arbitrary_Lagrangian-Eulerian_and_Coupled_Eulerian-Lagrangian_methods_for_large_deformation_geotechnical_problems
21.
Zeng
,
Q.
,
2014
, “
MMALE Numerical Simulation for Multi-Material Large Deformation Fluid Flows
,”
J. Phys. Conf. Ser.
,
510
(
1
), p.
012047
.10.1088/1742-6596/510/1/012047
22.
Chen
,
X.
, and
Zhang
,
X.
,
2019
, “
A Coupled MMALE-FE Method for Solving 3D Fluid-Solid Interaction Problems With Multi-Material Flow
,”
Eng. Comput. (Swansea, Wales)
,
36
(
8
), pp.
2766
2786
.10.1108/EC-10-2018-0486
23.
Huang
,
Y.
,
Willford
,
M. R.
, and
Schwer
,
L. E.
,
2012
, “
Validation of LS-DYNA ® MMALE With Blast Experiments
,”
12th International LS-DYNA Users Conference
, Detroit, MI, June 3–5.https://www.researchgate.net/publication/335950005_Validation_of_LSDYNA_MMALE_with_Blast_Experiments
24.
Livermore Software Technology Corporation (LSTC)
,
2017
, “
LS-DYNA Keyword Users Manual
,” Version R10.0, Volume 1.
25.
Yu
,
X.
, and
Ghajari
,
M.
,
2019
, “
An Assessment of Blast Modelling Techniques for Injury Biomechanics Research
,”
Int. J. Numer. Methods Biomed. Eng.
,
35
(
12
), p.
e3258
.10.1002/cnm.3258
26.
Slavik
,
T. P.
,
2010
, “
A Coupling of Empirical Explosive Blast Loads to ALE Air Domains in LS-DYNA®
,”
IOP Conference Series: Materials Science and Engineering
,
IOP Publishing
, Sydney, Australia, p.
12146
.10.1088/1757-899X/10/1/012146
27.
Tabatabaei
,
Z. S.
, and
Volz
,
J. S.
,
2012
, “
A Comparison Between Three Different Blast Methods in LS-DYNA: LBE, MM_ALE, Coupling of LBE and MM_ALE
,”
12th International LS-DYNA Users Conference
, Detroit, MI, June 3–5.https://www.dynalook.com/conferences/12th-international-ls-dyna-conference/blast-impact20-d.pdf
28.
Schwer
,
L.
,
2010
, “
A Brief Introduction to Coupling Load Blast Enhanced With Multi-Material ALE: The Best of Both Worlds for Air Blast Simulation
,”
German LS-DYNA Forum
, Bamberg, Germany, Oct. 15–17, pp.
1
12
.https://www.dynamore.de/en/downloads/papers/10-forum/papers/J-I-01.pdf
29.
Sarvghad-Moghaddam
,
H.
,
Jazi
,
M. S.
,
Rezaei
,
A.
,
Karami
,
G.
, and
Ziejewski
,
M.
,
2015
, “
Examination of the Protective Roles of Helmet/Faceshield and Directionality for Human Head Under Blast Waves
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
16
), pp.
1846
1855
.10.1080/10255842.2014.977878
30.
Sarvghad-Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
Correlative Analysis of Head Kinematics and Brain's Tissue Response: A Computational Approach Toward Understanding the Mechanisms of Blast TBI
,”
Shock Waves
,
27
(
6
), pp.
919
927
.10.1007/s00193-017-0749-1
31.
Rebelo
,
H. B.
, and
Cismasiu
,
C.
,
2017
, “
A Comparison Between Three Air Blast Simulation Techniques in LS-DYNA
,”
11th European LS-DYNA Conference
, DYNAmore, Salzburg, Austria, May 9–11.https://www.semanticscholar.org/paper/A-Comparison-between-Three-Air-Blast-Simulation-in-Rebelo-Cisma%C5%9Fiu/cc9f890aa7f21ab808ca6e85da87ca537261b640
32.
Skotak
,
M.
,
Alay
,
E.
,
Zheng
,
J. Q.
,
Halls
,
V.
, and
Chandra
,
N.
,
2018
, “
Effective Testing of Personal Protective Equipment in Blast Loading Conditions in Shock Tube: Comparison of Three Different Testing Locations
,”
PLoS One
,
13
(
6
), p.
e0198968
.10.1371/journal.pone.0198968
33.
Chandra
,
N.
,
Ganpule
,
S.
,
Kleinschmit
,
N. N.
,
Feng
,
R.
,
Holmberg
,
A. D.
,
Sundaramurthy
,
A.
,
Selvan
,
V.
, and
Alai
,
A.
,
2012
, “
Evolution of Blast Wave Profiles in Simulated Air Blasts: Experiment and Computational Modeling
,”
Shock Waves
,
22
(
5
), pp.
403
415
.10.1007/s00193-012-0399-2
34.
Crowley
,
J. S.
,
Brozoski
,
F. T.
,
Duma
,
S. M.
, and
Kennedy
,
E. A.
,
2009
, “
Development of the Facial and Ocular Countermeasures Safety (FOCUS) Headform
,”
Aviat. Space. Environ. Med.
,
80
(
9
), pp.
831
831
.10.3357/ASEM.21007.2009
35.
Gayzik
,
F.
,
Hamilton
,
C.
,
Tan
,
J. C.
,
McNally
,
C.
,
Duma
,
S. M.
,
Klinich
,
K. D.
, and
Stitzel
,
J. D.
,
2009
, “
A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development
,”
SAE
Paper No. 2009-01.10.4271/2009-01
36.
Gayzik
,
F.
,
Moreno
,
D.
,
Geer
,
C.
,
Wuertzer
,
S.
,
Martin
,
R.
, and
Stitzel
,
J.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.10.1007/s10439-011-0359-5
37.
Gayzik
,
F. S.
,
Moreno
,
D. P.
,
Vavalle
,
N. A.
,
Rhyne
,
A. C.
, and
Stitzel
,
J. D.
,
2011
, “
Development of the Global Human Body Models Consortium Mid-Sized Male Full Body Model
,” International Workshop on Human Subjects for Biomechanical Research,
National Highway Traffic Safety Administration
, Washington, DC.https://www.semanticscholar.org/paper/Development-of-the-global-human-body-models-male-Gayzik-Moreno/929f180279b36dacd5e59e8de05c3adce17c4111
38.
Mao
,
H.
,
Zhang
,
L.
,
Jiang
,
B.
,
Genthikatti
,
V. V.
,
Jin
,
X.
,
Zhu
,
F.
,
Makwana
,
R.
,
Gill
,
A.
,
Jandir
,
G.
, and
Singh
,
A.
,
2013
, “
Development of a Finite Element Human Head Model Partially Validated With Thirty Five Experimental Cases
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111002
.10.1115/1.4025101
39.
Salimi Jazi
,
M.
,
Rezaei
,
A.
,
Azarmi
,
F.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2016
, “
Computational Biomechanics of Human Brain With and Without the Inclusion of the Body Under Different Blast Orientation
,”
Comput. Methods Biomech. Biomed. Eng.
,
19
(
9
), pp.
1019
1031
.10.1080/10255842.2015.1088525
40.
Tan
,
X. G.
,
Przekwas
,
A. J.
, and
Gupta
,
R. K.
,
2017
, “
Computational Modeling of Blast Wave Interaction With a Human Body and Assessment of Traumatic Brain Injury
,”
Shock Waves
,
27
(
6
), pp.
889
904
.10.1007/s00193-017-0740-x
41.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
Proceedings of International Technical Conference on the Enhanced Safety of Vehicles
, Stuttgart, Germany, June 15–18.https://trid.trb.org/view/1100058
42.
Thunert
,
C.
,
2017
, “
CORAplus Release 4.0.4, User's Manual
,” PDB (Partnership for Dummy Technology Biomechanics), Gaimersheim, Germany.
43.
Tan
,
L. B.
,
Chew
,
F. S.
,
Tse
,
K. M.
,
Chye Tan
,
V. B.
,
Lee
,
H. P.
,
Tan
,
V. B. C.
, and
Lee
,
H. P.
,
2014
, “
Impact of Complex Blast Waves on the Human Head: A Computational Study
,”
Int. J. Numer. Methods Biomed. Eng.
,
30
(
12
), pp.
1476
1505
.10.1002/cnm.2668
44.
Ganpule
,
S.
,
Gu
,
L.
,
Alai
,
A.
, and
Chandra
,
N.
,
2012
, “
Role of Helmet in the Mechanics of Shock Wave Propagation Under Blast Loading Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
11
), pp.
1233
1244
.10.1080/10255842.2011.597353
45.
Sarvghad‐Moghaddam
,
H.
,
Rezaei
,
A.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2017
, “
Evaluation of Brain Tissue Responses Because of the Underwash Overpressure of Helmet and Faceshield Under Blast Loading
,”
Int. J. Numer. Methods Biomed. Eng.
,
33
(
1
), p.
e02782
.10.1002/cnm.2782
46.
Ganpule
,
S.
,
Alai
,
A.
,
Plougonven
,
E.
, and
Chandra
,
N.
,
2013
, “
Mechanics of Blast Loading on the Head Models in the Study of Traumatic Brain Injury Using Experimental and Computational Approaches
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
511
531
.10.1007/s10237-012-0421-8
47.
Bhardwaj
,
R.
,
Ziegler
,
K.
,
Seo
,
J. H.
,
Ramesh
,
K. T.
, and
Nguyen
,
T. D.
,
2014
, “
A Computational Model of Blast Loading on the Human Eye
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
123
140
.10.1007/s10237-013-0490-3
48.
Bailoor
,
S.
,
Bhardwaj
,
R.
, and
Nguyen
,
T. D.
,
2015
, “
Effectiveness of Eye Armor During Blast Loading
,”
Biomech. Model. Mechanobiol.
,
14
(
6
), pp.
1227
1237
.10.1007/s10237-015-0667-z
49.
Sundaramurthy
,
A.
, and
Chandra
,
N.
,
2014
, “
A Parametric Approach to Shape Field Relevant Blast Wave Profiles in Compressed Gas-Driven Shock Tube
,”
Front. Neurol.
,
5
, pp.
1
10
.10.3389/fneur.2014.00253
50.
Budday
,
S.
,
Ovaert
,
T. C.
,
Holzapfel
,
G. A.
,
Steinmann
,
P.
, and
Kuhl
,
E.
,
2020
, “
Fifty Shades of Brain: A Review on the Mechanical Testing and Modeling of Brain Tissue
,”
Arch. Comput. Methods Eng.
,
27
(
4
), pp.
1187
1230
.10.1007/s11831-019-09352-w
51.
Miller
,
L. E.
,
Urban
,
J. E.
, and
Stitzel
,
J. D.
,
2017
, “
Validation Performance Comparison for Finite Element Models of the Human Brain
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
12
), pp.
1273
1288
.10.1080/10255842.2017.1340462
52.
Garimella
,
H. T.
,
Kraft
,
R. H.
, and
Przekwas
,
A. J.
,
2018
, “
Do Blast Induced Skull Flexures Result in Axonal Deformation?
,”
PLoS One
,
13
(
3
), p.
e0190881
.10.1371/journal.pone.0190881
53.
Gilson
,
L.
,
Van Roey
,
J.
,
Guéders
,
C.
,
Gallant
,
J.
, and
Rabet
,
L.
,
2012
, “
A Simple Coupling of ALE Domain With Empirical Blast Load Function in LS-DYNA
,”
EPJ Web Conf.
,
26
, p.
4018
.10.1051/epjconf/20122604018
You do not currently have access to this content.