Abstract

The maximum stresses on a femoral stem must be known for selecting the right size and shape of the shaft cross-sectional area for reducing the stress shielding effect generated after the total hip arthroplasty (THA) surgical procedure. The methodology proposed in this study provides the tools to the designers of femoral stems and orthopedic surgeons to select the adequate femoral stem cross section, decreasing the stiffness of the stem, thus reducing the stress shielding effect in the patient bones. The first contribution is the theoretical development of the maximum static stress calculation for 12 different femoral stem models with the beam theory, followed by the comparison with the static finite element analysis (FEA) simulations and finally the experimental corroboration of one femoral stem model measuring the strain with linear strain gages and transform it to stresses, the three different approaches provide comparable results, with a maximum average error of less than 8.5%. The second contribution is the formulation of a new selection methodology based on maximum stresses in the femoral stem and the cross section area for decreasing the stress shielding effect, optimizing the area needed for withstand the loads and decreasing the overall stiffens of the stem.

References

1.
Kelmer
,
G.
,
Stone
,
A. H.
,
Turcotte
,
J.
, and
King
,
P. J.
,
2021
, “
Reasons for Revision: Primary Total Hip Arthroplasty Mechanisms of Failure
,”
J. Am. Acad. Orthop. Surg.
,
29
(
2
), pp.
78
87
.10.5435/JAAOS-D-19-00860
2.
Budynas
,
R.
, and
Nisbett
,
K.
,
2011
,
Shigleys Mechanical Engineering Design
, McGraw Hill, New York.
3.
Huiskes
,
R.
,
1993
, “
Stress Shielding and Bone Resorption in THA: Clinical Versus Computer-Simulation Studies
,”
Acta Orthop. Belg.
,
59
(
Suppl 1
), pp.
118
129
.http://www.ncbi.nlm.nih.gov/pubmed/8116386
4.
Ridzwan
,
M. I. Z.
,
Shuib
,
S.
,
Hassan
,
A. Y.
,
Shokri
,
A. A.
, and
Mohamad Ib
,
M. N.
,
2007
, “
Problem of Stress Shielding and Improvement to the Hip Implant Designs: A Review
,”
J. Med. Sci.
,
7
(
3
), pp.
460
467
.10.3923/jms.2007.460.467
5.
Simoneau
,
C.
,
Terriault
,
P.
,
Jetté
,
B.
,
Dumas
,
M.
, and
Brailovski
,
V.
,
2017
, “
Development of a Porous Metallic Femoral Stem: Design, Manufacturing, Simulation and Mechanical Testing
,”
Mater. Des.
, 114, pp.
546
556
.10.1016/j.matdes.2016.10.064
6.
Vargas-Hernandez
,
J. S.
,
Bingham
,
J. S.
,
Hart
,
A.
, and
Sierra
,
R. J.
,
2017
, “
Cemented Femoral Stems: An Invaluable Solution
,”
Semin. Arthroplast. JSES
,
28
(
4
), pp.
224
230
.10.1053/j.sart.2018.02.003
7.
Spitzer
,
A. I.
,
2005
, “
The Cemented Femoral Stem: Selecting the Ideal Patient
,”
Orthopedics
,
28
(
8
), p.
556
.10.3928/0147-7447-20050802-08
8.
Chethan
,
K. N.
,
Zuber
,
M.
,
Shyamasunder Bhat
,
N.
,
Satish Shenoy
,
B.
, and
Chandrakanth
,
R. K.
,
2019
, “
Static Structural Analysis of Different Stem Designs Used in Total Hip Arthroplasty Using Finite Element Method
,”
Heliyon
,
5
(
6
), p.
e01767
.10.1016/j.heliyon.2019.e01767
9.
Jetté
,
B.
,
Brailovski
,
V.
,
Dumas
,
M.
,
Simoneau
,
C.
, and
Terriault
,
P.
,
2018
, “
Femoral Stem Incorporating a Diamond Cubic Lattice Structure: Design, Manufacture and Testing
,”
J. Mech. Behav. Biomed. Mater.
,
77
(
Aug. 2017
), pp.
58
72
.10.1016/j.jmbbm.2017.08.034
10.
Jetté
,
B.
,
Brailovski
,
V.
,
Simoneau
,
C.
,
Dumas
,
M.
, and
Terriault
,
P.
,
2018
, “
Development and In Vitro Validation of a Simplified Numerical Model for the Design of a Biomimetic Femoral Stem
,”
J. Mech. Behav. Biomed. Mater.
,
77
(
August 2017
), pp.
539
550
.10.1016/j.jmbbm.2017.10.019
11.
Chethan
,
K. N.
,
Shyamasunder Bhat
,
N.
,
Zuber
,
M.
, and
Satish Shenoy
,
B.
,
2019
, “
Finite Element Analysis of Different Hip Implant Designs Along With Femur Under Static Loading Conditions
,”
J. Biomed. Phys. Eng.
,
9
(
5
), pp.
507
516
.10.31661/jbpe.v0i0.1210
12.
Chethan
,
K. N.
,
Ogulcan
,
G.
,
Shyamasunder Bhat
,
N.
,
Zuber
,
M.
,
Shenoy
,
B.,S.
,
Chethan
,
K. N.
,
Ogulcan
,
G.
,
Shyamasunder Bhat
,
N.
,
Zuber
,
M.
, and
Shenoy
,
B.,S.
,
2020
, “
Wear Estimation of Trapezoidal and Circular Shaped Hip Implants Along With Varying Taper Trunnion Radiuses Using Finite Element Method
,”
Comput. Methods Programs Biomed.
,
196
, p.
105597
.10.1016/j.cmpb.2020.105597
13.
Chethan
,
K. N.
,
Zuber
,
M.
,
Shyamasunder Bhat
,
N
, and
Shenoy
,
B. S.
,
2020
, “
Optimized Trapezoidal-Shaped Hip Implant for Total Hip Arthroplasty Using Finite Element Analysis
,”
Cogent Eng.
,
7
(
1
), p.
1719575
.10.1080/23311916.2020.1719575
14.
ASTM International
,
2013
, “
F 2996-13 Standard Practice for Finite Element Analysis (FEA) of Non-Modular Metallic Orthopaedic Hip Femoral Stems
,”
ASTM International
,
Conshohocken, PA
, pp.
1
11
.
15.
International Organization for Standardization,
2016
, “
7206-4:2010 Implants for Surgery — Partial and Total Hip Joint Prostheses Part 4: Determination of Endurance Properties and Performance of Stemmed Femoral Components
,”
International Organization for Standardization
,
Geneva, Switzerland
, pp.
1
24
.
16.
Sabatini
,
A. L.
, and
Goswami
,
T.
,
2008
, “
Hip Implants VII: Finite Element Analysis and Optimization of Cross-Sections
,”
Mater. Des.
,
29
(
7
), pp.
1438
1446
.10.1016/j.matdes.2007.09.002
You do not currently have access to this content.