Abstract

Three-dimensional (3D) extrusion bioprinting typically requires an ad hoc trial-and-error optimization of the ink composition toward enhanced resolution. The ink solutions are solidified after leaving cone-shaped or cylindrical nozzles. The presence of ink instability not only hampers the extrusion resolution but also affects the behavior of embedded cellular components. This is a key factor in selecting (bio)inks and bioprinting design parameters for well-established desktop and handheld bioprinters. In this work, we developed an analytical solution for the process of ink deposition and compared its predictions against numerical simulations of the deposition. We estimated the onset of ink instability as a function of ink rheological properties and nozzle geometry. Our analytical results suggest that enhancing the shear-thinning behavior of the ink shortens the toe region of the deposition. Such an extrusion process is often desired, as it leads to faster depositions. However, we demonstrated that such conditions increase the possibility of lateral buckling of the strand once touching the substrate defined as instability in this study. The present study serves as a benchmark for detailed simulations of the extrusion process for optimal bioprinting.

References

1.
Miri
,
A. K.
,
Khalilpour
,
A.
,
Cecen
,
B.
,
Maharjan
,
S.
,
Shin
,
S.-R.
, and
Khademhosseini
,
A.
,
2019
, “
Multiscale Bioprinting of Vascularized Models
,”
Biomaterials
,
198
, pp.
204
216
.10.1016/j.biomaterials.2018.08.006
2.
Hölzl
,
K.
,
Lin
,
S.
,
Tytgat
,
L.
,
Van Vlierberghe
,
S.
,
Gu
,
L.
, and
Ovsianikov
,
A.
,
2016
, “
Bioink Properties Before, During and After 3D Bioprinting
,”
Biofabrication
,
8
(
3
), p.
032002
.10.1088/1758-5090/8/3/032002
3.
Miri
,
A. K.
,
Mirzaee
,
I.
,
Hassan
,
S.
,
Mesbah Oskui
,
S.
,
Nieto
,
D.
,
Khademhosseini
,
A.
, and
Zhang
,
Y. S.
,
2019
, “
Effective Bioprinting Resolution in Tissue Model Fabrication
,”
Lab Chip
,
19
(
11
), pp.
2019
2037
.10.1039/C8LC01037D
4.
Blaeser
,
A.
,
Duarte Campos
,
D. F.
,
Puster
,
U.
,
Richtering
,
W.
,
Stevens
,
M. M.
, and
Fischer
,
H.
,
2016
, “
Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity
,”
Adv. Healthcare Mater.
,
5
(
3
), pp.
326
333
.10.1002/adhm.201500677
5.
Guillotin
,
B.
, and
Guillemot
,
F.
,
2011
, “
Cell Patterning Technologies for Organotypic Tissue Fabrication
,”
Trends Biotechnol.
,
29
(
4
), pp.
183
190
.10.1016/j.tibtech.2010.12.008
6.
Schwartz
,
R.
,
Malpica
,
M.
,
Thompson
,
G. L.
, and
Miri
,
A. K.
,
2020
, “
Cell Encapsulation in Gelatin Bioink Impairs 3D Bioprinting Resolution
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103524
.10.1016/j.jmbbm.2019.103524
7.
Liu
,
W.
,
Zhong
,
Z.
,
Hu
,
N.
,
Zhou
,
Y.
,
Maggio
,
L.
,
Miri
,
A. K.
,
Fragasso
,
A.
,
Jin
,
X.
,
Khademhosseini
,
A.
, and
Zhang
,
Y. S.
,
2018
, “
Coaxial Extrusion Bioprinting of 3D Microfibrous Constructs With Cell-Favorable Gelatin Methacryloyl Microenvironments
,”
Biofabrication
,
10
(
2
), p.
024102
.10.1088/1758-5090/aa9d44
8.
Wanjun
,
L.
Shrike
,
Z. Y.
,
Heinrich
,
M. A.
,
Fabio
,
D. F.
,
Lin
,
J. H.
,
Mahwish
,
B. S.
,
Moisés
,
A. M.
,
Jingzhou
,
Y.
,
Yi-Chen
,
L.
,
Grissel
,
T.-dS.
,
Miri
,
A. K.
,
Kai
,
Z.
,
Parastoo
,
K.
,
Gyan
,
P.
,
Hao
,
C.
,
Xiaofei
,
G.
,
Zhe
,
Z.
,
Jie
,
J.
,
Zhu
,
G. H.
,
Jin
,
X
,
Shin
,
S. R.
,
Dokmeci
,
M. R.
, and
Khademhosseini
,
A.
,
2017
, “
Rapid Continuous Multimaterial Extrusion Bioprinting
,”
Adv. Mater.
,
29
(
3
), p.
1604630
.10.1002/adma.201604630
9.
Paxton
,
N.
,
Smolan
,
W.
,
Böck
,
T.
,
Melchels
,
F.
,
Groll
,
J.
, and
Jungst
,
T.
,
2017
, “
Proposal to Assess Printability of Bioinks for Extrusion-Based Bioprinting and Evaluation of Rheological Properties Governing Bioprintability
,”
Biofabrication
,
9
(
4
), p.
044107
.10.1088/1758-5090/aa8dd8
10.
Liravi
,
F.
,
Darleux
,
R.
, and
Toyserkani
,
E.
,
2017
, “
Additive Manufacturing of 3D Structures With Non-Newtonian Highly Viscous Fluids: Finite Element Modeling and Experimental Validation
,”
Addit. Manuf.
,
13
, pp.
113
123
.10.1016/j.addma.2016.10.008
11.
Klein
,
J.
,
Stern
,
M.
,
Franchin
,
G.
,
Kayser
,
M.
,
Inamura
,
C.
,
Dave
,
S.
,
Weaver
,
J. C.
,
Houk
,
P.
,
Colombo
,
P.
,
Yang
,
M.
, and
Oxman
,
N.
,
2015
, “
Additive Manufacturing of Optically Transparent Glass
,”
3D Print. Addit. Manuf.
,
2
(
3
), pp.
92
105
.10.1089/3dp.2015.0021
12.
Mouser
,
V. H.
,
Melchels
,
F. P.
,
Visser
,
J.
,
Dhert
,
W. J.
,
Gawlitta
,
D.
, and
Malda
,
J.
,
2016
, “
Yield Stress Determines Bioprintability of Hydrogels Based on Gelatin-Methacryloyl and Gellan Gum for Cartilage Bioprinting
,”
Biofabrication
,
8
(
3
), p.
035003
.10.1088/1758-5090/8/3/035003
13.
Derby
,
B.
,
2011
, “
Inkjet Printing Ceramics: From Drops to Solid
,”
J. Eur. Ceram. Soc.
,
31
(
14
), pp.
2543
2550
.10.1016/j.jeurceramsoc.2011.01.016
14.
Pastoriza-Gallego
,
M. J.
,
Lugo
,
L.
,
Legido
,
J. L.
, and
Piñeiro
,
M. M.
,
2011
, “
Rheological Non-Newtonian Behaviour of Ethylene Glycol-Based Fe2O3 Nanofluids
,”
Nanoscale Res. Lett.
,
6
(
1
), pp.
1
7
.10.1186/1556-276X-6-560
15.
Chiu-Webster
,
S.
, and
Lister
,
J. R.
,
2006
, “
The Fall of a Viscous Thread Onto a Moving Surface: A ‘Fluid-Mechanical Sewing Machine
,”
J. Fluid Mech.
,
569
, pp.
89
111
.10.1017/S0022112006002503
16.
Avazmohammadi
,
R.
, and
Castañeda
,
P. P.
,
2015
, “
The Rheology of Non-Dilute Dispersions of Highly Deformable Viscoelastic Particles in Newtonian Fluids
,”
J. Fluid Mech.
,
763
, pp.
386
432
.10.1017/jfm.2014.687
17.
Avazmohammadi
,
R.
, and
Castañeda
,
P. P.
,
2016
, “
Macroscopic Rheological Behavior of Suspensions of Soft Solid Particles in Yield Stress Fluids
,”
J. Non-Newtonian Fluid Mech.
,
234
, pp.
139
161
.10.1016/j.jnnfm.2016.05.005
18.
Pasandideh‐Fard
,
M.
,
Qiao
,
Y.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
1996
, “
Capillary Effects During Droplet Impact on a Solid Surface
,”
Phys. Fluids
,
8
(
3
), pp.
650
659
.10.1063/1.868850
19.
Gaharwar
,
A. K.
,
Avery
,
R. K.
,
Assmann
,
A.
,
Paul
,
A.
,
McKinley
,
G. H.
,
Khademhosseini
,
A.
, and
Olsen
,
B. D.
,
2014
, “
Shear-Thinning Nanocomposite Hydrogels for the Treatment of Hemorrhage
,”
ACS Nano
,
8
(
10
), pp.
9833
9842
.10.1021/nn503719n
20.
Dogan
,
E.
,
Bhusal
,
A.
,
Cecen
,
B.
, and
Miri
,
A. K.
,
2020
, “
3D Printing Metamaterials Towards Tissue Engineering
,”
Appl. Mater. Today
,
20
, p.
100752
.10.1016/j.apmt.2020.100752
21.
Ahsan
,
K.
, and
Rahman
,
S.
,
2019
, “
Implementation Challenges of Three-Dimensional Printing (3DP) in Medical Device Manufacturing Supply Chains
,”
Symposium on Logistics
, Würzburg, Germany, July 14–17, p.
2
.
22.
Vinogradov
,
P.
,
2019
,
3D Printing in Medicine: Current Challenges and Potential Applications, 3D Printing Technology in Nanomedicine
,
Elsevier
,
MO
, p.
1
.
You do not currently have access to this content.