Abstract

The effect of body habitus on auscultation of heart murmurs is investigated via computational hemoacoustic modeling. The source of the heart murmur is first obtained from a hemodynamic simulation of blood flow through a stenosed aortic valve. This sound source is then placed at the aortic valve location in four distinct human thorax models, and the propagation of the murmur in each thorax model is simulated by solving the elastic wave equations in the time-domain. Placing the same sound source in different thorax models allows for the disambiguation of the effect of body habitus on cardiac auscultation. The surface acceleration resulting from the murmur on each subject's chest surface shows that subjects with higher body-mass index and thoracic cross-sectional area yield smaller acceleration values for the S1 sound. Moreover, the spectral analysis of the signal shows that slope from linear regression in the normal heart sound frequency range (10–150 Hz) is larger for children at the aortic, pulmonic, and mitral auscultation points compared to that for adults. The slope in the murmur frequency range (150–400 Hz) was larger for female subjects at the mitral point compared to that for male subjects. The trends from the results show the potential of the proposed computational method to provide quantitative insights regarding the effect of various anatomical factors on cardiac auscultation.

References

1.
Cheng
,
Y.
,
Wang
,
K.
,
Xu
,
H.
,
Li
,
T.
,
Jin
,
Q.
, and
Cui
,
D.
,
2021
, “
Recent Developments in Sensors for Wearable Device Applications
,”
Anal. Bioanal. Chem.
,
413
(
24
), pp.
6037
6057
.10.1007/s00216-021-03602-2
2.
Strain
,
T.
,
Wijndaele
,
K.
,
Dempsey
,
P. C.
,
Sharp
,
S. J.
,
Pearce
,
M.
,
Jeon
,
J.
,
Lindsay
,
T.
,
Wareham
,
N.
, and
Brage
,
S.
,
2020
, “
Wearable-Device-Measured Physical Activity and Future Health Risk
,”
Nat. Med.
,
26
(
9
), pp.
1385
1391
.10.1038/s41591-020-1012-3
3.
Montinari
,
M. R.
, and
Minelli
,
S.
,
2019
, “
The First 200 Years of Cardiac Auscultation and Future Perspectives
,”
J. Multidiscip. Healthcare
,
12
, pp.
183
189
.10.2147/JMDH.S193904
4.
Lakhe
,
A.
,
Sodhi
,
I.
,
Warrier
,
J.
, and
Sinha
,
V.
,
2016
, “
Development of Digital Stethoscope for Telemedicine
,”
J. Med. Eng. Technol.
,
40
(
1
), pp.
20
24
.10.3109/03091902.2015.1116633
5.
Sapsanis
,
C.
,
Welsh
,
N.
,
Pozin
,
M.
,
Garreau
,
G.
,
Tognetti
,
G.
,
Bakhshaee
,
H.
,
Pouliquen
,
P. O.
,
Mitral
,
R.
,
Thompson
,
W. R.
, and
Andreou
,
A. G.
,
2018
, “
Stethovest: A Simultaneous Multichannel Wearable System for Cardiac Acoustic Mapping
,” IEEE Biomedical Circuits and Systems Conference (
BioCAS
), Cleveland, OH, Oct. 17–19.10.1109/BIOCAS.2018.8584742
6.
Seo
,
J. H.
,
Bakhshaee
,
H.
,
Garreau
,
G.
,
Zhu
,
C.
,
Andreou
,
A.
,
Thompson
,
W. R.
, and
Mittal
,
R.
,
2017
, “
A Method for the Computational Modeling of the Physics of Heart Murmurs
,”
J. Comput. Phys.
,
336
, pp.
546
568
.10.1016/j.jcp.2017.02.018
7.
Gosselin
,
M.-C.
,
Neufeld
,
E.
,
Moser
,
H.
,
Huber
,
E.
,
Farcito
,
S.
,
Gerber
,
L.
,
Jedensjö
,
M.
,
Hilber
,
I.
,
Gennaro
,
F.
,
Lloyd
,
B.
,
Cherubini
,
E.
,
Szczerba
,
D.
,
Kainz
,
W.
, and
Kuster
,
N.
,
2014
, “
Development of a New Generation of High-Resolution Anatomical Models for Medical Device Evaluation: The Virtual Population 3.0
,”
Phys. Med. Biol.
,
59
(
18
), pp.
5287
5303
.10.1088/0031-9155/59/18/5287
8.
Ramakrishnan
,
S.
,
Udpa
,
S.
, and
Udpa
,
L.
,
2009
, “
A Numerical Model Simulating Sound Propagation in Human Thorax
,” IEEE International Symposium on Biomedical Imaging: From Nano to Macro (
ISBI '09
), Boston, MA, June 28–July 1, pp.
530
533
.10.1109/ISBI.2009.5193101
9.
Seo
,
J. H.
,
Vedula
,
V.
,
Abraham
,
T.
,
Lardo
,
A. C.
,
Dawoud
,
F.
,
Luo
,
H.
, and
Mittal
,
R.
,
2014
, “
Effect of the Mitral Valve on Diastolic Flow Patterns
,”
Phys. Fluids
,
26
(
12
), p.
121901
.10.1063/1.4904094
10.
Seo
,
J.-H.
,
Zhu
,
C.
,
Resar
,
J.
, and
Mittal
,
R.
,
2020
, “
Flow Physics of Normal and Abnormal Bioprosthetic Aortic Valves
,”
Int. J. Heat Fluid Flow
,
86
, p.
108740
.10.1016/j.ijheatfluidflow.2020.108740
11.
Seo
,
J. H.
, and
Mittal
,
R.
,
2013
, “
Effect of Diastolic Flow Patterns on the Function of the Left Ventricle
,”
Phys. Fluids
,
25
(
11
), p.
110801
.10.1063/1.4819067
12.
Patel
,
H. N.
,
Miyoshi
,
T.
,
Addetia
,
K.
,
Henry
,
M. P.
,
Citro
,
R.
,
Daimon
,
M.
,
Gutierrez Fajardo
,
P.
,
Kasliwal
,
R. R.
,
Kirkpatrick
,
J. N.
,
Monaghan
,
M. J.
,
Muraru
,
D.
,
Ogunyankin
,
K. O.
,
Park
,
S. W.
,
Ronderos
,
R. E.
,
Sadeghpour
,
A.
,
Scalia
,
G. M.
,
Takeuchi
,
M.
,
Tsang
,
W.
,
Tucay
,
E. S.
,
Tude Rodrigues
,
A. C.
,
Vivekanandan
,
A.
,
Zhang
,
Y.
,
Schreckenberg
,
M.
,
Blankenhagen
,
M.
,
Degel
,
M.
,
Rossmanith
,
A.
,
Mor-Avi
,
V.
,
Asch
,
F. M.
,
Lang
,
R. M.
,
Prado
,
A. D.
,
Filipini
,
E.
,
Kwon
,
A.
,
Hoschke-Edwards
,
S.
,
Afonso
,
T. R.
,
Thampinathan
,
B.
,
Sooriyakanthan
,
M.
,
Zhu
,
T.
,
Wang
,
Z.
,
Wang
,
Y.
,
Yin
,
L.
,
Li
,
S.
,
Alagesan
,
R.
,
Balasubramanian
,
S.
,
Ananth
,
R. V. A.
,
Bansal
,
M.
,
Alizadehasl
,
A.
,
Badano
,
L.
,
Bossone
,
E.
,
Di Vece
,
D.
,
Bellino
,
M.
,
Nakao
,
T.
,
Kawata
,
T.
,
Hirokawa
,
M.
,
Sawada
,
N.
,
Nabeshima
,
Y.
,
Yun
,
H. R.
, and
Hwang
,
J.-w.
, and
WASE Investigators
,
2021
, “
Normal Values of Cardiac Output and Stroke Volume According to Measurement Technique, Age, Sex, and Ethnicity: Results of the World Alliance of Societies of Echocardiography Study
,”
J. Am. Soc. Echocardiography
,
34
(
10
), pp.
1077
1085
.10.1016/j.echo.2021.05.012
13.
Fleming
,
S.
,
Thompson
,
M.
,
Stevens
,
R.
,
Heneghan
,
C.
,
Plüddemann
,
A.
,
Maconochie
,
I.
,
Tarassenko
,
L.
, and
Mant
,
D.
,
2011
, “
Normal Ranges of Heart Rate and Respiratory Rate in Children From Birth to 18 Years of Age: A Systematic Review of Observational Studies
,”
Lancet
,
377
(
9770
), pp.
1011
1018
.10.1016/S0140-6736(10)62226-X
14.
Seo
,
J. H.
, and
Mittal
,
R.
,
2011
, “
A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries
,”
J. Comput. Phys.
,
230
(
4
), pp.
1000
1019
.10.1016/j.jcp.2010.10.017
15.
Seo
,
J. H.
, and
Mittal
,
R.
,
2012
, “
A Coupled Flow-Acoustic Computational Study of Bruits From a Modeled Stenosed Artery
,”
Med. Biol. Eng. Comput.
,
50
(
10
), pp.
1025
1035
.10.1007/s11517-012-0917-5
16.
Zhu
,
C.
,
Seo
,
J.-H.
, and
Mittal
,
R.
,
2019
, “
Computational Modeling and Analysis of Murmurs Generated by Modeled Aortic Stenoses
,”
ASME J. Biomech. Eng.
,
141
(
4
), p.
041007
.10.1115/1.4042765
17.
Hanifin
,
C.
,
2010
, “
Cardiac Auscultation 101: A Basic Science Approach to Heart Murmurs
,”
J. Am. Acad. Physician Assistants
,
23
(
4
), pp.
44
48
.10.1097/01720610-201004000-00007
You do not currently have access to this content.