Abstract

Advances in understanding the effects the mechanical characteristics of prosthetic feet on user biomechanics have enabled passive prostheses to improve the walking pattern of people with lower limb amputation. However, there is no consensus on the design methodology and criteria required to maximize specific user outcomes and fully restore their mobility. The Lower Leg Trajectory Error (LLTE) framework is a novel design methodology based on the replication of lower leg dynamics. The LLTE value evaluates how closely a prosthetic foot replicates a target walking pattern. Designing a prosthesis that minimizes the LLTE value, optimizes its mechanical function to enable users to best replicate the target lower leg trajectory. Here, we conducted a systematic sensitivity investigation of LLTE-optimized prostheses. Five people with unilateral transtibial amputation walked overground at self-selected speeds using five prototype energy storage and return feet with varying LLTE values. The prototypes' LLTE values were varied by changing the stiffness of the participant's LLTE-optimized design by 60%, 80%, 120%, and 167%. Users most closely replicated the target able-bodied walking pattern with the LLTE-optimized stiffness, experimentally demonstrating that the predicted optimum was a true optimum. Additionally, the predicted LLTE values were correlated to the user's ability to replicate the target walking pattern, user preferences, and clinical outcomes including roll-over geometries, trunk sway, prosthetic energy return, and peak push-off power. This study further validates the use of the LLTE framework as a predictive and quantitative tool for designing and evaluating prosthetic feet.

References

1.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Dev.
,
45
(
1
), pp.
15
30
.10.1682/JRRD.2006.11.0147
2.
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2015
, “
Mechanisms of Gait Asymmetry Due to Push-Off Deficiency in Unilateral Amputees
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
5
), pp.
776
785
.10.1109/TNSRE.2014.2356722
3.
Major
,
M. J.
, and
Fey
,
N. P.
,
2017
, “
Considering Passive Mechanical Properties and Patient User Motor Performance in Lower Limb Prosthesis Design Optimization to Enhance Rehabilitation Outcomes
,”
Phys. Ther. Rev.
,
22
(
3–4
), pp.
202
216
.10.1080/10833196.2017.1346033
4.
Price
,
M. A.
,
Beckerle
,
P.
, and
Sup
,
F. C.
,
2019
, “
Design Optimization in Lower Limb Prostheses: A Review
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
27
(
8
), pp.
1574
1588
.10.1109/TNSRE.2019.2927094
5.
Hafner
,
B. J.
,
2005
, “
Clinical Prescription and Use of Prosthetic Foot and Ankle Mechanisms: A Review of the Literature
,”
J. Prosthet. Orthot.
,
17
(
Suppl
), pp.
S5
S11
.10.1097/00008526-200510001-00004
6.
Major
,
M. J.
,
Kenney
,
L. P.
,
Twiste
,
M.
, and
Howard
,
D.
,
2012
, “
Stance Phase Mechanical Characterization of Transtibial Prostheses Distal to the Socket: A Review
,”
J. Rehabil. Res. Dev.
, 49(6), pp.
815
830
.10.1682/jrrd.2011.06.0108
7.
Linde
,
H. V. D.
,
Hofstad
,
C. J.
,
Geurts
,
A. C. H.
,
Postema
,
K.
,
Geertzen
,
J. H. B.
, and
van Limbeek
,
J.
,
2004
, “
A Systematic Literature Review of the Effect of Different Prosthetic Components on Human Functioning With a Lower Limb Prosthesis
,”
J. Rehabil. Res. Develop.
,
41
(
4
), pp.
555
570
.10.1682/JRRD.2003.06.0102
8.
Hafner
,
B. J.
,
Sanders
,
J. E.
,
Czerniecki
,
J.
, and
Fergason
,
J.
,
2002
, “
Energy Storage and Return Prostheses: Does Patient Perception Correlate With Biomechanical Analysis?
,”
Clinical Biomech.
,
17
(
5
), pp.
325
344
.10.1016/S0268-0033(02)00020-7
9.
Raschke
,
S. U.
,
Orendurff
,
M. S.
,
Mattie
,
J. L.
,
Kenyon
,
D. E.
,
Jones
,
O. Y.
,
Moe
,
D.
,
Winder
,
L.
,
Wong
,
A. S.
,
Moreno-Hernández
,
A.
,
Highsmith
,
M. J.
,
Sanderson
,
D. J.
, and
Kobayashi
,
T.
,
2015
, “
Biomechanical Characteristics, Patient Preference and Activity Level With Different Prosthetic Feet: A Randomized Double Blind Trial With Laboratory and Community Testing
,”
J. Biomech.
,
48
(
1
), pp.
146
152
.10.1016/j.jbiomech.2014.10.002
10.
Hofstad
,
C. J.
,
Linde
,
H.
,
Limbeek
,
J.
, and
Postema
,
K.
,
Cochrane Bone, Joint and Muscle Trauma Group
2004
, “
Prescription of Prosthetic Ankle-Foot Mechanisms After Lower Limb Amputation
,”
Cochrane Database Syst. Rev.
,
2010
(
1
), p.
CD003978
.10.1002/14651858.CD003978.pub2
11.
Kaufman
,
K. R.
, and
Bernhardt
,
K.
,
2021
, “
Functional Performance Differences Between Carbon Fiber and Fiberglass Prosthetic Feet
,”
Prosthetics Orthotics Int.
,
45
(
3
), pp.
205
213
.10.1097/PXR.0000000000000004
12.
Schaffalitzky
,
E.
,
Gallagher
,
P.
,
MacLachlan
,
M.
, and
Wegener
,
S. T.
,
2012
, “
Developing Consensus on Important Factors Associated With Lower Limb Prosthetic Prescription and Use
,”
Disabil. Rehabil.
,
34
(
24
), pp.
2085
2094
.10.3109/09638288.2012.671885
13.
Laferrier
,
J. Z.
,
Groff
,
A.
,
Hale
,
S.
, and
Sprunger
,
N. A.
,
2018
, “
A Review of Commonly Used Prosthetic Feet for Developing Countries: A Call for Research and Development
,”
J. Nov. Physiother.
,
08
(
01
), pp.
1
10
.10.4172/2165-7025.1000380
14.
Olesnavage
,
K. M.
, and
Winter
,
A. G.
,
2018
, “
A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
8
), pp.
1544
1555
.10.1109/TNSRE.2018.2848845
15.
Prost
,
V.
,
Johnson
,
W. B.
,
Kent
,
J. A.
,
Major
,
M. J.
, and
Winter
,
A. G.
,
2022
, “
Biomechanical Evaluation Over Level Ground Walking of User-Specific Prosthetic Feet Designed Using the Lower Leg Trajectory Error Framework
,”
Sci. Rep.
,
12
(
1
), pp.
1
15
.10.1038/s41598-022-09114-y
16.
Witte
,
K. A.
,
Fiers
,
P.
,
Sheets-Singer
,
A. L.
, and
Collins
,
S. H.
,
2020
, “
Improving the Energy Economy of Human Running With Powered and Unpowered Ankle Exoskeleton Assistance
,”
Sci. Rob.
,
5
(
40
), p.
eaay9108
.10.1126/scirobotics.aay9108
17.
Czerniecki
,
J. M.
, and
Morgenroth
,
D. C.
,
2017
, “
Metabolic Energy Expenditure of Ambulation in Lower Extremity Amputees: What Have we Learned and What Are the Next Steps?
,”
Disabil. Rehabil.
,
39
(
2
), pp.
143
151
.10.3109/09638288.2015.1095948
18.
Welker
,
C. G.
,
Voloshina
,
A. S.
,
Chiu
,
V. L.
, and
Collins
,
S. H.
,
2021
, “
Shortcomings of Human-in-the-Loop Optimization of an Ankle-Foot Prosthesis Emulator: A Case Series
,”
R. Soc. Open Sci.
,
8
(
5
), p. 202020.10.1098/rsos.202020
19.
Hedrick
,
E. A.
,
Stanhope
,
S. J.
, and
Takahashi
,
K. Z.
,
2019
, “
The Foot and Ankle Structures Reveal Emergent Properties Analogous to Passive Springs During Human Walking
,”
PLoS ONE
,
14
(
6
), p.
e0218047
.10.1371/journal.pone.0218047
20.
Pollen
,
T.
,
2015
, “
A Non-Biomimetic Approach For Producing Shank Kinematics And Energetics
,” Ph.D. thesis,
University of Delaware
, ProQuest Dissertations, Ann Arbor, MI.
21.
Kolbeinsdóttir
,
R.
,
2018
, “
Shank Kinematics and Kinetics in Prosthetic Gait: Implications for Improved Design of Prosthetic Systems
,” Ph.D. thesis,
University of Delaware
, ProQuest Dissertations, Ann Arbor, MI.
22.
Olesnavage
,
K. M.
,
Prost
,
V.
,
Johnson
,
W. B.
, and
Amos Winter
,
V. G.
,
2018
, “
Passive Prosthetic Foot Shape and Size Optimization Using Lower Leg Trajectory Error
,”
ASME J. Mech. Des.
,
140
(
10
), p. 102302.10.1115/1.4040779
23.
Prost
,
V.
,
Olesnavage
,
K. M.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
V. A. G.
,
2018
, “
Design and Testing of a Prosthetic Foot With Interchangeable Custom Springs for Evaluating Lower Leg Trajectory Error, an Optimization Metric for Prosthetic Feet
,”
ASME J. Mechanisms Robotics
,
10
(
2
), p.
021010
.10.1115/1.4039342
24.
Olesnavage
,
K.
,
Prost
,
V.
,
Johnson
,
B.
,
Major
,
M.
, and
Winter
,
A. G.
,
2021
, “
Experimental Demonstration of the Lower Leg Trajectory Error Framework Using Physiological Data as Input
,”
ASME J. Biomech. Eng.
,
143
(
3
), p.
031003
.10.1115/1.4048643
25.
Prost
,
V.
,
Peterson
,
H. P.
, and
Winter
,
A. G.
,
2023
, “
Multi-Keel Passive Prosthetic Foot Design Optimization Using the Lower Leg Trajectory Error Framework
,”
ASME J. Mechanisms Robotics
, 15(4), p.
041001
.10.1115/1.4055107
26.
Prost
,
V.
,
2021
, “
Development and Validation of a Passive Prosthetic Foot Design Framework based on Lower Leg Dynamics
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
, Cambridge, MA.https://www.researchgate.net/publication/358434324_Development_and_Validation_of_a_Passive_Prosthetic_Foot_Design_Framework_based_on_Lower_Leg_Dynamics
27.
Johnson
,
W. B.
,
Prost
,
V.
,
Mukul
,
P.
, and
Winter
,
V. A. G.
,
2023
, “
Design and Evaluation of High-Performance, Low-Cost Prosthetic Feet for Developing Countries
,”
ASME J. Med. Devices,
17(1), p. 011003.10.1115/1.4055967
28.
Winter
,
D. A.
,
2009
,
Biomechanics and Motor Control of Human Movement
, 4th ed.,
John Wiley & Sons, Hoboken, NJ
.
29.
Shepherd
,
M. K.
,
Azocar
,
A. F.
,
Major
,
M. J.
, and
Rouse
,
E. J.
,
2018
, “
Amputee Perception of Prosthetic Ankle Stiffness During Locomotion
,”
J. NeuroEng. Rehabil.
,
15
(
1
), pp. 1–10.10.1186/s12984-018-0432-5
30.
Huston
,
C.
,
Dillingham
,
T. R.
, and
Esquenazi
,
A.
,
1998
, “
Rehabilitation of the Lower Limb Amputee
,”
Rehabilitation Injured Combatant
, Office of The Surgeon General Department of the Army, United States of America, Washington, DC, Vol.
1
, pp.
79
159
.
31.
Webber
,
C. M.
, and
Kaufman
,
K.
,
2017
, “
Instantaneous Stiffness and Hysteresis of Dynamic Elastic Response Prosthetic Feet
,”
Prosthet. Orthot. Int.
,
41
(
5
), pp.
463
468
.10.1177/0309364616683980
32.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2020
, “
Comparing Preference of Ankle-Foot Stiffness in Below-Knee Amputees and Prosthetists
,”
Sci. Rep.
,
10
(
1
), pp. 1–8.10.1038/s41598-020-72131-2
33.
Gailey
,
R. S.
,
Nash
,
M. S.
,
Atchley
,
T. A.
,
Zilmer
,
R. M.
,
Moline-Little
,
G. R.
,
Morris-Cresswell
,
N.
, and
Siebert
,
L. I.
,
1997
, “
The Effects of Prosthesis Mass on Metabolic Cost of Ambulation in Non-Vascular Trans-Tibial Amputees
,”
Prosthet. Orthot. Int.
,
21
(
1
), pp.
9
16
.10.3109/03093649709164525
34.
Selles
,
R. W.
,
Bussmann
,
J. B.
,
Van Soest
,
A. J.
, and
Stam
,
H. J.
,
2004
, “
The Effect of Prosthetic Mass Properties on the Gait of Transtibial amputees - A Mathematical Model
,”
Disabil. Rehabil.
,
26
(
12
), pp.
694
704
.10.1080/09638280410001704296
35.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
,
Wootten
,
M. E.
,
Gainey
,
J.
,
Gorton
,
G.
, and
Cochran
,
G. V. B.
,
1989
, “
Repeatability of Kinematic, Kinetic, and Electromyographic Data in Normal Adult Gait
,”
J. Orthop. Res.
,
7
(
6
), pp.
849
860
.10.1002/jor.1100070611
36.
Major
,
M. J.
,
Scham
,
J.
, and
Orendurff
,
M.
,
2018
, “
The Effects of Common Footwear on Stance-Phase Mechanical Properties of the Prosthetic Foot-Shoe System
,”
Prosthet. Orthot. Int.
,
42
(
2
), pp.
198
207
.10.1177/0309364617706749
37.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2000
, “
Prosthetic Foot Roll-Over Shapes With Implications for Alignment of Trans-Tibial Prostheses
,”
Prosthet. Orthot. Int.
,
24
(
3
), pp.
205
215
.10.1080/03093640008726549
38.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
,
1990
, “
Measurement of Lower-Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
.10.1002/jor.1100080310
39.
Kent
,
J. A.
,
Arelekatti
,
V. M.
,
Petelina
,
N. T.
,
Johnson
,
W. B.
,
Brinkmann
,
J. T.
,
Winter
,
A. G.
, and
Major
,
M. J.
,
2021
, “
Knee Swing Phase Flexion Resistance Affects Several Key Features of Leg Swing Important to Safe Transfemoral Prosthetic Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
965
973
.10.1109/TNSRE.2021.3082459
40.
Pinzone
,
O.
,
Schwartz
,
M. H.
, and
Baker
,
R.
,
2016
, “
Comprehensive Non-Dimensional Normalization of Gait Data
,”
Gait Posture
,
44
, pp.
68
73
.10.1016/j.gaitpost.2015.11.013
41.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2011
, “
The Influence of Energy Storage and Return Foot Stiffness on Walking Mechanics and Muscle Activity in Below-Knee Amputees
,”
Clinical Biomech.
,
26
(
10
), pp.
1025
1032
.10.1016/j.clinbiomech.2011.06.007
42.
Klodd
,
E.
,
Hansen
,
A.
,
Fatone
,
S.
, and
Edwards
,
M.
,
2010
, “
Effects of Prosthetic Foot Forefoot Flexibility on Gait of Unilateral Transtibial Prosthesis Users
,”
J. Rehabil. Res. Dev.
,
47
(
9
), pp.
899
910
.10.1682/JRRD.2009.10.0166
43.
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2013
, “
Mechanical and Energetic Consequences of Rolling Foot Shape in Human Walking
,”
J. Exp. Biol.
,
216
(
Pt 14
), pp.
2722
2731
.10.1242/jeb.082347
44.
Crimin
,
A.
,
McGarry
,
A.
,
Harris
,
E. J.
, and
Solomonidis
,
S. E.
,
2014
, “
The Effect That Energy Storage and Return Feet Have on the Propulsion of the Body: A Pilot Study
,”
J. Eng. Med.
,
228
(
9
), pp.
908
915
.10.1177/0954411914549392
45.
Alexander
,
R.
,
1989
, “
Optimization and Gaits in the Locomotion of Vertebrates
,”
Physiol. Rev.
,
69
(
4
), pp.
1199
1227
.10.1152/physrev.1989.69.4.1199
46.
Robinson
,
R.
,
Herzog
,
W.
, and
Nigg
,
B. M.
,
1987
, “
Use of Force Platform Variables to Quantify the Effects of Chiropractic Manipulation on Gait Symmetry
,”
J. Manipulative Physiol. Ther.
,
10
(
4
), pp.
172
176
.https://europepmc.org/article/med/2958572
47.
Gates
,
D. H.
,
Scott
,
S. J.
,
Wilken
,
J. M.
, and
Dingwell
,
J. B.
,
2013
, “
Frontal Plane Dynamic Margins of Stability in Individuals With and Without Transtibial Amputation Walking on a Loose Rock Surface
,”
Gait Posture
,
38
(
4
), pp.
570
575
.10.1016/j.gaitpost.2013.01.024
48.
Major
,
M. J.
,
Stine
,
R. L.
, and
Gard
,
S. A.
,
2013
, “
The Effects of Walking Speed and Prosthetic Ankle Adapters on Upper Extremity Dynamics and Stability-Related Parameters in Bilateral Transtibial Amputee Gait
,”
Gait Posture
,
38
(
4
), pp.
858
863
.10.1016/j.gaitpost.2013.04.012
49.
Sawers
,
A.
, and
Hahn
,
M. E.
,
2011
, “
Trajectory of the Center of Rotation in Non-Articulated Energy Storage and Return Prosthetic Feet
,”
J. Biomech.
,
44
(
9
), pp.
1673
1677
.10.1016/j.jbiomech.2011.03.028
50.
Hansen
,
A. H.
,
Childress
,
D. S.
,
Miff
,
S. C.
,
Gard
,
S. A.
, and
Mesplay
,
K. P.
,
2004
, “
The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses
,”
J. Biomech.
,
37
(
10
), pp.
1467
1474
.10.1016/j.jbiomech.2004.01.017
51.
Takahashi
,
K. Z.
,
Kepple
,
T. M.
, and
Stanhope
,
S. J.
,
2012
, “
A Unified Deformable (UD) Segment Model for Quantifying Total Power of Anatomical and Prosthetic Below-Knee Structures During Stance in Gait
,”
J. Biomech.
,
45
(
15
), pp.
2662
2667
.10.1016/j.jbiomech.2012.08.017
52.
Zelik
,
K. E.
, and
Honert
,
E. C.
,
2018
, “
Ankle and Foot Power in Gait Analysis: Implications for Science, Technology and Clinical Assessment
,”
J. Biomech.
,
75
, pp.
1
12
.10.1016/j.jbiomech.2018.04.017
53.
Esposito
,
E. R.
,
Whitehead
,
J. M.
, and
Wilken
,
J. M.
,
2016
, “
Step-to-Step Transition Work During Level and Inclined Walking Using Passive and Powered Ankle-Foot Prostheses
,”
Prosthet. Orthot. Int.
,
40
(
3
), pp.
311
319
.10.1177/0309364614564021
54.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2002
, “
Simultaneous Positive and Negative External Mechanical Work in Human Walking
,”
J. Biomech.
,
35
(
1
), pp.
117
124
.10.1016/S0021-9290(01)00169-5
55.
Baars
,
E. C.
,
Schrier
,
E.
,
DIjkstra
,
P. U.
, and
Geertzen
,
J. H.
,
2018
, “
Prosthesis Satisfaction in Lower Limb Amputees: A Systematic Review of Associated Factors and Questionnaires
,”
Medicine
,
97
(
39
), p.
e12296
.10.1097/MD.0000000000012296
56.
Harry
,
J.
,
Eggleston
,
J.
,
Lidstone
,
D.
, and
Dufek
,
J.
,
2019
, “
Weighted Vest Use to Improve Movement Control During Walking in Children With Autism
,”
Transl. J. Am. Coll. Sports Med.
,
4
(
10
), pp.
64
73
.10.1249/TJX.0000000000000085
57.
Bates
,
B.
,
James
,
C.
, and
Dufek
,
J.
,
2004
, “
Single-Subject Analysis
,” Innovative
Analyses Human Movement
, Human Kinetics, Champaign, IL, pp.
3
28
.
58.
Hansen
,
A. H.
,
Sam
,
M.
, and
Childress
,
D. S.
,
2004
, “
The Effective Foot Length Ratio: A Potential Tool for Characterization and Evaluation of Prosthetic Feet
,”
J. Prosthet. Orthot.
,
16
(
2
), pp.
41
45
.10.1097/00008526-200404000-00002
59.
Houdijk
,
H.
,
Pollmann
,
E.
,
Groenewold
,
M.
,
Wiggerts
,
H.
, and
Polomski
,
W.
,
2009
, “
The Energy Cost for the Step-to-Step Transition in Amputee Walking
,”
Gait Posture
,
30
(
1
), pp.
35
40
.10.1016/j.gaitpost.2009.02.009
60.
Morgenroth
,
D. C.
,
Segal
,
A. D.
,
Zelik
,
K. E.
,
Czerniecki
,
J. M.
,
Klute
,
G. K.
,
Adamczyk
,
P. G.
,
Orendurff
,
M. S.
,
Hahn
,
M. E.
,
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2011
, “
The Effect of Prosthetic Foot Push-Off on Mechanical Loading Associated With Knee Osteoarthritis in Lower Extremity Amputees
,”
Gait Posture
,
34
(
4
), pp.
502
507
.10.1016/j.gaitpost.2011.07.001
61.
Farrokhi
,
S.
,
Mazzone
,
B.
,
Yoder
,
A.
,
Grant
,
K.
, and
Wyatt
,
M.
,
2016
, “
A Narrative Review of the Prevalence and Risk Factors Associated With Development of Knee Osteoarthritis After Traumatic Unilateral Lower Limb Amputation
,”
Military Med.
,
181
(
S4
), pp.
38
44
.10.7205/MILMED-D-15-00510
62.
Adamczyk
,
P. G.
,
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2006
, “
The Advantages of a Rolling Foot in Human Walking
,”
J. Exp. Biol.
,
209
(
20
), pp.
3953
3963
.10.1242/jeb.02455
63.
Hansen
,
A. H.
,
Meier
,
M. R.
,
Sessoms
,
P. H.
, and
Childress
,
D. S.
,
2006
, “
The Effects of Prosthetic Foot Roll-Over Shape Arc Length on the Gait of Trans-Tibial Prosthesis Users
,”
Prosthet. Orthot. Int.
,
30
(
3
), pp.
286
299
.10.1080/03093640600816982
64.
Clites
,
T. R.
,
Shepherd
,
M. K.
,
Ingraham
,
K. A.
,
Wontorcik
,
L.
, and
Rouse
,
E. J.
,
2021
, “
Understanding Patient Preference in Prosthetic Ankle Stiffness
,”
J. NeuroEng. Rehabil.
,
18
(
1
), pp.
1
16
.10.1186/s12984-021-00916-1
65.
Zhang
,
X.
,
Fiedler
,
G.
, and
Liu
,
Z.
,
2019
, “
Evaluation of Gait Variable Change Over Time as Transtibial Amputees Adapt to a New Prosthesis Foot
,”
BioMed Res. Int.
,
2019
(
i
), pp.
1
6
.10.1155/2019/9252368
66.
Wanamaker
,
A. B.
,
Andridge
,
R. R.
, and
Chaudhari
,
A. M.
,
2017
, “
When to Biomechanically Examine a Lower-Limb Amputee: A Systematic Review of Accommodation Times
,”
Prosthet. Orthot. Int.
,
41
(
5
), pp.
431
445
.10.1177/0309364616682385
67.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2013
, “
Altering Prosthetic Foot Stiffness Influences Foot and Muscle Function During Below-Knee Amputee Walking: A Modeling and Simulation Analysis
,”
J. Biomech.
,
46
(
4
), pp.
637
644
.10.1016/j.jbiomech.2012.11.051
You do not currently have access to this content.