Abstract

Mitigating the risk of falling is an area of significant interest among clinicians due to the often profound health-related consequences of falls. Consequently, there is acute interest in characterizing the biomechanical conditions associated with increased fall risk, and in methods for quantifying gait stability under those conditions toward predicting and ultimately preventing falls. Considerable insights into the biomechanics of fall risk have been provided by examining the passive dynamic walking (PDW) model under nominal and perturbed conditions. This work aims to expand upon prior efforts and develop the PDW model as a model of tripping and slipping by simulating and analyzing the behavior of the model during transient perturbations. We show that fall risk increases with increasing perturbation magnitude, yet stable walking may be found even with fairly large perturbations. In cases where transient perturbations result in a fall, a nontrivial portion exhibit a substantial period of stumbling before the fall, indicating an opportunity for developing early fall-risk detection and intervention techniques. In such cases, we show that widely used kinematic metrics are able to predict whether or not a fall will occur with up to 82% balanced accuracy, even when a variety of gait kinematics are considered.

References

1.
Gillespie
,
L. D.
,
Robertson
,
M. C.
,
Gillespie
,
W. J.
,
Sherrington
,
C.
,
Gates
,
S.
,
Clemson
,
L.
, and
Lamb
,
S. E.
,
Cochrane Bone, Joint and Muscle Trauma Group
2012
, “
Interventions for Preventing Falls in Older People Living in the Community
,”
Cochrane Database Syst. Rev.
,
2021
(
6
), Article No. CD007146.10.1002/14651858.CD007146.pub3
2.
Florence
,
C. S.
,
Bergen
,
G.
,
Atherly
,
A.
,
Burns
,
E.
,
Stevens
,
J.
, and
Drake
,
C.
,
2018
, “
Medical Costs of Fatal and Nonfatal Falls in Older Adults
,”
J. Am. Geriatr. Soc.
,
66
(
4
), pp.
693
698
.10.1111/jgs.15304
3.
World Health Organization,
2021
, “
Falls
,” World Health Organization, Geneva, Switzerland, accessed Nov. 14, 2021, https://www.who.int/news-room/fact-sheets/detail/falls
4.
Cumming
,
R. G.
, and
Klineberg
,
R. J.
,
1994
, “
Fall Frequency and Characteristics and the Risk of Hip Fractures
,”
J. Am. Geriatr. Soc.
,
42
(
7
), pp.
774
778
.10.1111/j.1532-5415.1994.tb06540.x
5.
Stevens
,
J. A.
, and
Olson
,
S.
,
2000
, “
Reducing Falls and Resulting Hip Fractures Among Older Women
,”
Home Care Provider
,
5
(
4
), pp.
134
141
.10.1067/mhc.2000.109232
6.
Aharonoff
,
G. B.
,
Koval
,
K. J.
,
Skovron
,
M. L.
, and
Zuckerman
,
J. D.
,
1997
, “
Hip Fractures in the Elderly: Predictors of One Year Mortality
,”
J. Orthop. Trauma
,
11
(
3
), pp.
162
165
.10.1097/00005131-199704000-00004
7.
Kenzora
,
J. E.
,
Mccarthy
,
R. E.
,
Drennan
,
J.
, and
Sledge
,
C. B.
,
1984
, “
Hip Fracture Mortality. Relation to Age, Treatment, Preoperative Illness, Time of Surgery, and Complications
,”
Clin. Orthop. Relat. Res.
,
186
, pp.
45
56
.10.1097/00003086-198406000-00008
8.
Hamacher
,
D.
,
Singh
,
N.
,
Van Dieën
,
J. H.
,
Heller
,
M.
, and
Taylor
,
W. R.
,
2011
, “
Kinematic Measures for Assessing Gait Stability in Elderly Individuals: A Systematic Review
,”
J. R. Soc. Interface
,
8
(
65
), pp.
1682
1698
.10.1098/rsif.2011.0416
9.
Hausdorff
,
J. M.
,
2005
, “
Gait Variability: Methods, Modeling and Meaning
,”
J. Neuroeng. Rehabil.
,
2
(
1
), pp.
1
9
.10.1186/1743-0003-2-19
10.
Roos
,
P. E.
, and
Dingwell
,
J. B.
,
2010
, “
Influence of Simulated Neuromuscular Noise on Movement Variability and Fall Risk in a 3D Dynamic Walking Model
,”
J. Biomech.
,
43
(
15
), pp.
2929
2935
.10.1016/j.jbiomech.2010.07.008
11.
Verghese
,
J.
,
Holtzer
,
R.
,
Lipton
,
R. B.
, and
Wang
,
C.
,
2009
, “
Quantitative Gait Markers and Incident Fall Risk in Older Adults
,”
J. Gerontol. Ser. A
,
64A
(
8
), pp.
896
901
.10.1093/gerona/glp033
12.
Espy
,
D. D.
,
Yang
,
F.
,
Bhatt
,
T.
, and
Pai
,
Y.-C.
,
2010
, “
Independent Influence of Gait Speed and Step Length on Stability and Fall Risk
,”
Gait Posture
,
32
(
3
), pp.
378
382
.10.1016/j.gaitpost.2010.06.013
13.
Hausdorff
,
J. M.
,
Rios
,
D. A.
, and
Edelberg
,
H. K.
,
2001
, “
Gait Variability and Fall Risk in Community-Living Older Adults: A 1-Year Prospective Study
,”
Arch. Phys. Med. Rehabil.
,
82
(
8
), pp.
1050
1056
.10.1053/apmr.2001.24893
14.
Sterke
,
C. S.
,
van Beeck
,
E. F.
,
Looman
,
C. W.
,
Kressig
,
R. W.
, and
van der Cammen
,
T. J.
,
2012
, “
An Electronic Walkway Can Predict Short-Term Fall Risk in Nursing Home Residents With Dementia
,”
Gait Posture
,
36
(
1
), pp.
95
101
.10.1016/j.gaitpost.2012.01.012
15.
Dingwell
,
J. B.
,
Cusumano
,
J. P.
,
Cavanagh
,
P. R.
, and
Sternad
,
D.
,
2001
, “
Local Dynamic Stability Versus Kinematic Variability of Continuous Overground and Treadmill Walking
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
27
32
.10.1115/1.1336798
16.
Grabiner
,
M. D.
,
Donovan
,
S.
,
Bareither
,
M. L.
,
Marone
,
J. R.
,
Hamstra-Wright
,
K.
,
Gatts
,
S.
, and
Troy
,
K. L.
,
2008
, “
Trunk Kinematics and Fall Risk of Older Adults: Translating Biomechanical Results to the Clinic
,”
J. Electromyogr. Kinesiol.
,
18
(
2
), pp.
197
204
.10.1016/j.jelekin.2007.06.009
17.
Salot
,
P.
,
Patel
,
P.
, and
Bhatt
,
T.
,
2016
, “
Reactive Balance in Individuals With Chronic Stroke: Biomechanical Factors Related to Perturbation-Induced Backward Falling
,”
Phys. Ther.
,
96
(
3
), pp.
338
347
.10.2522/ptj.20150197
18.
Thapa
,
P. B.
,
Gideon
,
P.
,
Brockman
,
K. G.
,
Fought
,
R. L.
, and
Ray
,
W. A.
,
1996
, “
Clinical and Biomechanical Measures of Balance Fall Predictors in Ambulatory Nursing Home Residents
,”
J. Gerontol. Ser. A
,
51A
(
5
), pp.
M239
M246
.10.1093/gerona/51A.5.M239
19.
Antwi-Afari
,
M. F.
, and
Li
,
H.
,
2018
, “
Fall Risk Assessment of Construction Workers Based on Biomechanical Gait Stability Parameters Using Wearable Insole Pressure System
,”
Adv. Eng. Inf.
,
38
, pp.
683
694
.10.1016/j.aei.2018.10.002
20.
Bruijn
,
S. M.
, and
Van Dieën
,
J. H.
,
2018
, “
Control of Human Gait Stability Through Foot Placement
,”
J. R. Soc. Interface
,
15
(
143
), p.
20170816
.10.1098/rsif.2017.0816
21.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
,
1998
, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
281
288
.10.1115/1.2798313
22.
Handžić
,
I.
, and
Reed
,
K. B.
,
2015
, “
Perception of Gait Patterns That Deviate From Normal and Symmetric Biped Locomotion
,”
Front. Psychol.
,
6
, Article No. 199.10.3389/fpsyg.2015.00199
23.
Handžić
,
I.
, and
Reed
,
K. B.
,
2013
, “
Validation of a Passive Dynamic Walker Model for Human Gait Analysis
,” 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
),
IEEE
, Osaka, Japan, July 3–7, pp.
6945
6948
.10.1109/EMBC.2013.6611155
24.
Kuo
,
A. D.
,
2002
, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
113
120
.10.1115/1.1427703
25.
Kuo
,
A. D.
,
2001
, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
,
123
(
3
), pp.
264
269
.10.1115/1.1372322
26.
Wisse
,
M.
,
Schwab
,
A. L.
,
van der Linde
,
R. Q.
, and
van der Helm
,
F. C.
,
2005
, “
How to Keep From Falling Forward: Elementary Swing Leg Action for Passive Dynamic Walkers
,”
IEEE Trans. Rob.
,
21
(
3
), pp.
393
401
.10.1109/TRO.2004.838030
27.
Roos
,
P. E.
, and
Dingwell
,
J. B.
,
2013
, “
Using Dynamic Walking Models to Identify Factors That Contribute to Increased Risk of Falling in Older Adults
,”
Human Mov. Sci.
,
32
(
5
), pp.
984
996
.10.1016/j.humov.2013.07.001
28.
Donelan
,
J.
,
Shipman
,
D. W.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2004
, “
Mechanical and Metabolic Requirements for Active Lateral Stabilization in Human Walking
,”
J. Biomech.
,
37
(
6
), pp.
827
835
.10.1016/j.jbiomech.2003.06.002
29.
Bauby
,
C. E.
, and
Kuo
,
A. D.
,
2000
, “
Active Control of Lateral Balance in Human Walking
,”
J. Biomech.
,
33
(
11
), pp.
1433
1440
.10.1016/S0021-9290(00)00101-9
30.
Kuo
,
A. D.
,
1999
, “
Stabilization of Lateral Motion in Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
18
(
9
), pp.
917
930
.10.1177/02783649922066655
31.
Su
,
J. L.-S.
, and
Dingwell
,
J. B.
,
2007
, “
Dynamic Stability of Passive Dynamic Walking on an Irregular Surface
,”
ASME J. Biomech. Eng.
,
129
(
6
), pp.
802
810
.10.1115/1.2800760
32.
Campbell
,
A. J.
,
Reinken
,
J.
,
Allan
,
B.
, and
Martinez
,
G.
,
1981
, “
Falls in Old Age: A Study of Frequency and Related Clinical Factors
,”
Age Ageing
,
10
(
4
), pp.
264
270
.10.1093/ageing/10.4.264
33.
Tinetti
,
M. E.
,
Speechley
,
M.
, and
Ginter
,
S. F.
,
1988
, “
Risk Factors for Falls Among Elderly Persons Living in the Community
,”
New Engl. J. Med.
,
319
(
26
), pp.
1701
1707
.10.1056/NEJM198812293192604
34.
Pereira
,
S. G.
,
Santos
,
C. B. D.
,
Doring
,
M.
, and
Portella
,
M. R.
,
2017
, “
Prevalence of Household Falls in Long-Lived Adults and Association With Extrinsic Factors 1
,”
Rev. Latino-Am. Enfermagem
,
25
, Article No. e2900.10.1590/1518-8345.1646.2900
35.
Rosen
,
T.
,
Mack
,
K. A.
, and
Noonan
,
R. K.
,
2013
, “
Slipping and Tripping: Fall Injuries in Adults Associated With Rugs and Carpets
,”
J. Inj. Violence Res.
,
5
(
1
), pp.
61
65
.10.5249/jivr.v5i1.177
36.
Pijnappels
,
M.
,
Bobbert
,
M. F.
, and
van Dieën
,
J. H.
,
2005
, “
Push-Off Reactions in Recovery After Tripping Discriminate Young Subjects, Older Non-Fallers and Older Fallers
,”
Gait Posture
,
21
(
4
), pp.
388
394
.10.1016/j.gaitpost.2004.04.009
37.
Pijnappels
,
M.
,
Bobbert
,
M. F.
, and
van Dieën
,
J. H.
,
2005
, “
How Early Reactions in the Support Limb Contribute to Balance Recovery After Tripping
,”
J. Biomech.
,
38
(
3
), pp.
627
634
.10.1016/j.jbiomech.2004.03.029
38.
Grabiner
,
M. D.
,
Koh
,
T. J.
,
Lundin
,
T. M.
, and
Jahnigen
,
D. W.
,
1993
, “
Kinematics of Recovery From a Stumble
,”
J. Gerontol.
,
48
(
3
), pp.
M97
M102
.10.1093/geronj/48.3.M97
39.
Kaufman
,
K. R.
,
Wyatt
,
M. P.
,
Sessoms
,
P. H.
, and
Grabiner
,
M. D.
,
2014
, “
Task-Specific Fall Prevention Training is Effective for Warfighters With Transtibial Amputations
,”
Clin. Orthop. Relat. Res.
,
472
(
10
), pp.
3076
3084
.10.1007/s11999-014-3664-0
40.
Di
,
P.
,
Hasegawa
,
Y.
,
Nakagawa
,
S.
,
Sekiyama
,
K.
,
Fukuda
,
T.
,
Huang
,
J.
, and
Huang
,
Q.
,
2016
, “
Fall Detection and Prevention Control Using Walking-Aid Cane Robot
,”
IEEE/ASME Trans. Mechatronics
,
21
(
2
), pp.
625
637
.10.1109/TMECH.2015.2477996
41.
Horchler
,
A. D.
,
2017
, “
Passive-Dynamic-Walking
,” GitHub, accessed Nov. 5, 2020, https://github.com/horchler/Passive-Dynamic-Walking
42.
Lord
,
S.
,
Galna
,
B.
, and
Rochester
,
L.
,
2013
, “
Moving Forward on Gait Measurement: Toward a More Refined Approach
,”
Mov. Disorders
,
28
(
11
), pp.
1534
1543
.10.1002/mds.25545
43.
Goswami
,
A.
,
Thuilot
,
B.
, and
Espiau
,
B.
,
1998
, “
A Study of the Passive Gait of a Compass-Like Biped Robot: Symmetry and Chaos
,”
Int. J. Robot. Res.
,
17
(
12
), pp.
1282
1301
.10.1177/027836499801701202
44.
Thies
,
S. B.
,
Richardson
,
J. K.
, and
Ashton-Miller
,
J. A.
,
2005
, “
Effects of Surface Irregularity and Lighting on Step Variability During Gait: A Study in Healthy Young and Older Women
,”
Gait Posture
,
22
(
1
), pp.
26
31
.10.1016/j.gaitpost.2004.06.004
45.
Buckley
,
T. A.
,
Vallabhajosula
,
S.
,
Oldham
,
J. R.
,
Munkasy
,
B. A.
,
Evans
,
K. M.
,
Krazeise
,
D. A.
,
Ketcham
,
C. J.
, and
Hall
,
E. E.
,
2016
, “
Evidence of a Conservative Gait Strategy in Athletes With a History of Concussions
,”
J. Sport Health Sci.
,
5
(
4
), pp.
417
423
.10.1016/j.jshs.2015.03.010
46.
Robinovitch
,
S. N.
,
Feldman
,
F.
,
Yang
,
Y.
,
Schonnop
,
R.
,
Leung
,
P. M.
,
Sarraf
,
T.
,
Sims-Gould
,
J.
, and
Loughin
,
M.
,
2013
, “
Video Capture of the Circumstances of Falls in Elderly People Residing in Long-Term Care: An Observational Study
,”
Lancet
,
381
(
9860
), pp.
47
54
.10.1016/S0140-6736(12)61263-X
47.
de Boer
,
T.
,
Wisse
,
M.
, and
van der Helm
,
F. C. T.
,
2010
, “
Mechanical Analysis of the Preferred Strategy Selection in Human Stumble Recovery
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
071012
.10.1115/1.4001281
48.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
.10.1016/j.jbiomech.2013.09.032
49.
Mendoza-Crespo
,
R.
,
Torricelli
,
D.
,
Huegel
,
J. C.
,
Gordillo
,
J. L.
,
Pons
,
J. L.
, and
Soto
,
R.
,
2019
, “
An Adaptable Human-Like Gait Pattern Generator Derived From a Lower Limb Exoskeleton
,”
Front. Rob. AI
,
6
, p.
36
.10.3389/frobt.2019.00036
50.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
51.
Dingwell
,
J. B.
, and
Cusumano
,
J. P.
,
2000
, “
Nonlinear Time Series Analysis of Normal and Pathological Human Walking
,”
Chaos
,
10
(
4
), pp.
848
863
.10.1063/1.1324008
You do not currently have access to this content.