Abstract

Quantification of clinically meaningful tibiofemoral motions requires a joint coordinate system (JCS) with motions free from kinematic crosstalk errors. The objectives were to use a JCS with literature-backed functional axes (FUNC) and a JCS recommended by the International Society of Biomechanics (ISB) to determine tibiofemoral kinematics of the native (i.e., healthy) knee, determine variability associated with each JCS, and determine whether the FUNC JCS significantly reduced kinematic crosstalk errors compared to the ISB JCS. Based on a kinematic model consisting of a three-cylindric joint chain, the FUNC JCS included functional flexion–extension (F–E) and internal-external (I–E) tibial rotation axes. In contrast, the ISB JCS included F–E and I–E axes defined using anatomic landmarks. Single-plane fluoroscopic images in 13 subjects performing a weighted deep knee bend were analyzed. Tibiofemoral kinematics using the FUNC JCS fell within the physiological range of motion in all six degrees-of-freedom. Internal tibial rotation averaged 13 deg for the FUNC JCS versus 10 deg for the ISB JCS and motions in the other four degrees-of-freedom (collectively termed off-axis motions) were minimal as expected based on biomechanical constraints. Off-axis motions for the ISB JCS were significantly greater; maximum valgus rotation was 4 deg and maximum anterior and distraction translations were 9 mm and 25 mm, respectively, which is not physiologic. Variabilities in off-axis motions were significantly greater with the ISB JCS (p < 0.0002). The FUNC JCS achieved clinically meaningful kinematics by significantly reducing kinematic crosstalk errors and is the more suitable coordinate system for quantifying tibiofemoral motions.

References

1.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
2.
Hull
,
M. L.
,
2020
, “
Coordinate System Requirements to Determine Motions of the Tibiofemoral Joint Free From Kinematic Crosstalk Errors
,”
J. Biomech.
,
109
, p.
109928
.10.1016/j.jbiomech.2020.109928
3.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
4.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
, et al.,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion–Part I: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.10.1016/S0021-9290(01)00222-6
5.
Asano
,
T.
,
Akagi
,
M.
, and
Nakamura
,
T.
,
2005
, “
The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique
,”
J. Arthroplasty
,
20
(
8
), pp.
1060
1067
.10.1016/j.arth.2004.08.005
6.
Churchill
,
D. L.
,
Incavo
,
S. J.
,
Johnson
,
C. C.
, and
Beynnon
,
B. D.
,
1998
, “
The Transepicondylar Axis Approximates the Optimal Flexion Axis of the Knee
,”
Clin. Orthop. Rel. Res.
,
356
, pp.
111
118
.10.1097/00003086-199811000-00016
7.
Komistek
,
R. D.
,
Dennis
,
D. A.
, and
Mahfouz
,
M.
,
2003
, “
In Vivo Fluoroscopic Analysis of the Normal Human Knee
,”
Clin. Orthop. Rel. Res.
,
410
, pp.
69
81
.10.1097/01.blo.0000062384.79828.3b
8.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A.
,
2004
, “
Does the Femur Roll-Back With Flexion?
,”
J. Bone Jt. Surg. Br.
,
86
(
6
), pp.
925
931
.10.1302/0301-620x.86b6.14589
9.
Dennis
,
D. A.
,
Mahfouz
,
M. R.
,
Komistek
,
R. D.
, and
Hoff
,
W.
,
2005
, “
In Vivo Determination of Normal and Anterior Cruciate Ligament-Deficient Knee Kinematics
,”
J. Biomech.
,
38
(
2
), pp.
241
253
.10.1016/j.jbiomech.2004.02.042
10.
Nicolet-Petersen
,
S.
,
Saiz
,
A.
,
Shelton
,
T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “
Small Differences in Tibial Contact Locations Following Kinematically Aligned TKA From the Native Contralateral Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
28
(
9
), pp.
2893
2904
.10.1007/s00167-019-05658-1
11.
Walker
,
P. S.
,
Heller
,
Y.
,
Yildirim
,
G.
, and
Immerman
,
I.
,
2011
, “
Reference Axes for Comparing the Motion of Knee Replacements With the Anatomic Knee
,”
Knee
,
18
(
5
), pp.
312
316
.10.1016/j.knee.2010.07.005
12.
Chung
,
B. J.
,
Kang
,
Y. G.
,
Chang
,
C. B.
,
Kim
,
S. J.
, and
Kim
,
T. K.
,
2009
, “
Differences Between Sagittal Femoral Mechanical and Distal Reference Axes Should Be Considered in Navigated TKA
,”
Clin. Orthop. Rel. Res.
,
467
(
9
), pp.
2403
2413
.10.1007/s11999-009-0762-5
13.
Han
,
H. S.
,
Chang
,
C. B.
,
Seong
,
S. C.
,
Lee
,
S.
, and
Lee
,
M. C.
,
2008
, “
Evaluation of Anatomic References for Tibial Sagittal Alignment in Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
16
(
4
), pp.
373
377
.10.1007/s00167-008-0486-1
14.
Howell
,
S. M.
,
Kuznik
,
K.
,
Hull
,
M. L.
, and
Siston
,
R. A.
,
2010
, “
Longitudinal Shapes of the Tibia and Femur Are Unrelated and Variable
,”
Clin. Orthop. Rel. Res.
,
468
(
4
), pp.
1142
1148
.10.1007/s11999-009-0984-6
15.
Banks
,
S. A.
, and
Hodge
,
W. A.
,
1996
, “
Accurate Measurement of Three-Dimensional Knee Replacement Kinematics Using Single-Plane Fluoroscopy
,”
IEEE Trans. Bio-Med Eng.
,
43
(
6
), pp.
638
649
.10.1109/10.495283
16.
Fregly
,
B. J.
,
Rahman
,
H. A.
, and
Banks
,
S. A.
,
2005
, “
Theoretical Accuracy of Model-Based Shape Matching for Measuring Natural Knee Kinematics With Single-Plane Fluoroscopy
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
692
699
.10.1115/1.1933949
17.
Prins
,
A. H.
,
Kaptein
,
B. L.
,
Stoel
,
B. C.
,
Reiber
,
J. H. C.
, and
Valstar
,
E. R.
,
2010
, “
Detecting Femur–Insert Collisions to Improve Precision of Fluoroscopic Knee Arthroplasty Analysis
,”
J. Biomech.
,
43
(
4
), pp.
694
700
.10.1016/j.jbiomech.2009.10.023
18.
Tupling
,
S. J.
, and
Pierrynowski
,
M. R.
,
1987
, “
Use of Cardan Angles to Locate Rigid Bodies in Three-Dimensional Space
,”
Med. Biol. Eng. Comput.
,
25
(
5
), pp.
527
532
.10.1007/BF02441745
19.
Mu
,
S.
,
Moro-Oka
,
T.
,
Johal
,
P.
,
Hamai
,
S.
,
Freeman
,
M. A.
, and
Banks
,
S. A.
,
2011
, “
Comparison of Static and Dynamic Knee Kinematics During Squatting
,”
Clin. Biomech.
,
26
(
1
), pp.
106
108
.10.1016/j.clinbiomech.2010.08.006
20.
Moro-Oka
,
T. A.
,
Hamai
,
S.
,
Miura
,
H.
,
Shimoto
,
T.
,
Higaki
,
H.
,
Fregly
,
B. J.
,
Iwamoto
,
Y.
, and
Banks
,
S. A.
,
2008
, “
Dynamic Activity Dependence of In Vivo Normal Knee Kinematics
,”
J. Orthop. Res.
,
26
(
4
), pp.
428
434
.10.1002/jor.20488
21.
DeFrate
,
L. E.
,
Sun
,
H.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G. A.
,
2004
, “
In Vivo Tibiofemoral Contact Analysis Using 3D MRI-Based Knee Models
,”
J. Biomech.
,
37
(
10
), pp.
1499
1504
.10.1016/j.jbiomech.2004.01.012
22.
Flandry
,
F.
, and
Hommel
,
G.
,
2011
, “
Normal Anatomy and Biomechanics of the Knee
,”
Sports Med. Arthrosc. Rev.
,
19
(
2
), pp.
82
92
.10.1097/JSA.0b013e318210c0aa
23.
Asano
,
T.
,
Akagi
,
M.
,
Tanaka
,
K.
,
Tamura
,
J.
, and
Nakamura
,
T.
,
2001
, “
In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique
,”
Clin. Orthop. Rel. Res.
,
388
, pp.
157
166
.10.1097/00003086-200107000-00023
24.
Ristaniemi
,
A.
,
Stenroth
,
L.
,
Mikkonen
,
S.
, and
Korhonen
,
R. K.
,
2018
, “
Comparison of Elastic, Viscoelastic and Failure Tensile Material Properties of Knee Ligaments and Patellar Tendon
,”
J. Biomech.
,
79
, pp.
31
38
.10.1016/j.jbiomech.2018.07.031
25.
Victor
,
J.
,
Wong
,
P.
,
Witvrouw
,
E.
,
Sloten
,
J. V.
, and
Bellemans
,
J.
,
2009
, “
How Isometric Are the Medial Patellofemoral, Superficial Medial Collateral, and Lateral Collateral Ligaments of the Knee?
,”
Am. J. Sports Med.
,
37
(
10
), pp.
2028
2036
.10.1177/0363546509337407
26.
Croce
,
U. D.
,
Cappozzo
,
A.
, and
Kerrigan
,
D. C.
,
1999
, “
Pelvis and Lower Limb Anatomical Landmark Calibration Precision and Its Propagation to Bone Geometry and Joint Angles
,”
Med. Biol. Eng. Comp.
,
37
, pp.
155
161
.10.1007/BF02513282
You do not currently have access to this content.