Abstract

Metatarsal fractures represent the most common traumatic foot injury; however, metatarsal fracture thresholds remain poorly characterized, which affects performance targets for protective footwear. This experimental study investigated impact energies, forces, and deformations to characterize metatarsal fracture risk for simulated in situ workplace impact loading. A drop tower setup conforming to ASTM specifications for testing impact resistance of metatarsal protective footwear applied a target impact load (22–55 J) to 10 cadaveric feet. Prior to impact, each foot was axially loaded through the tibia with a specimen-specific bodyweight load to replicate a natural weight-bearing stance. Successive iterations of impact tests were performed until a fracture was observed with X-ray imaging. Descriptive statistics were computed for force, deformation, and impact energy. Correlational analysis was conducted on donor age, BMI, deformation, force, and impact energy. A survival analysis was used to generate injury risk curves (IRC) using impact energy and force. All 10 specimens fractured with the second metatarsal being the most common fracture location. The mean peak energy, force, and deformation during fracture were 46.6 J, 4640 N, 28.9 mm, respectively. Survival analyses revealed a 50% fracture probability was associated with 35.8 J and 3562 N of impact. Foot deformation was not significantly correlated (p = 0.47) with impact force, thus deformation is not recommended to predict metatarsal fracture risk. The results from this study can be used to improve test standards for metatarsal protection, provide performance targets for protective footwear developers, and demonstrate a methodological framework for future metatarsal fracture research.

References

1.
Petrisor
,
B. A.
,
Ekrol
,
I.
, and
Court-Brown
,
C.
,
2006
, “
The Epidemiology of Metatarsal Fractures
,”
Foot Ank Int.
,
27
(
3
), pp.
172
174
.10.1177/107110070602700303
2.
Cakir
,
H.
,
Van Vliet-Koppert
,
S. T.
,
Van Lieshout
,
E. M. M.
,
De Vries
,
M. R.
,
Van Der Elst
,
M.
, and
Schepers
,
T.
,
2011
, “
Demographics and Outcome of Metatarsal Fractures
,”
Arch. Orthop. Trauma Surg.
,
131
(
2
), pp.
241
245
.10.1007/s00402-010-1164-6
3.
Urteaga
,
A. J.
, and
Lynch
,
M.
,
1995
, “
Fractures of the Central Metatarsals
,”
Clin. Podiatr. Med. Surg.
,
12
(
4
), pp.
759
772
.https://europepmc.org/article/med/8536210
4.
Spector
,
F. C.
,
Karlin
,
J. M.
,
Scurran
,
B. L.
, and
Silvani
,
S. L.
,
1984
, “
Lesser Metatarsal Fractures. Incidence, Management, and Review
,”
J. Am. Podiatr. Med. Assoc.
,
74
(
6
), pp.
259
264
.10.7547/87507315-74-6-259
5.
Shuen
,
W. M. V.
,
Boulton
,
C.
,
Batt
,
M. E.
, and
Moran
,
C.
,
2009
, “
Metatarsal Fraures and Sports
,”
Surgeon
,
7
(
2
), pp.
86
88
.10.1016/S1479-666X(09)80022-X
6.
Islam
,
S. S.
,
Biswas
,
R. S.
,
Nambiar
,
A. M.
,
Syamlal
,
G.
,
Velilla
,
A. M.
,
Ducatman
,
A. M.
, and
Doyle
,
E. J.
,
2001
, “
Incidence and Risk of Work-Related Fracture Injuries: Experience of a State-Managed Workers' Compensation System
,”
J. Occup. Environ. Med.
,
43
(
2
), pp.
140
146
.10.1097/00043764-200102000-00013
7.
ASTM International
,
2018
,
ASTM F2412-18a: Standard Test Methods for Foot Protection
,
ASTM International
,
West Conshohocken, PA
.
8.
Danesi
,
V.
,
Cristofolini
,
L.
,
Juszczyk
,
M. M.
,
Erani
,
P.
, and
Viceconti
,
M.
,
2012
, “
Mechanical Properties of the Human Metatarsal Bones
,”
J. Mech. Med. Biol.
,
12
(
4
), p.
1250062
.10.1142/S0219519412005034
9.
Fujikawa
,
T.
,
Asano
,
Y.
,
Nishimoto
,
T.
, and
Nishikata
,
R.
,
2017
, “
Static Fracture Tolerance of Human Metatarsal in Being Run Over by Robot
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
),
IEEE
, Vancouver, BC, Canada, Sept. 24–28, pp.
6935
6942
.10.1109/IROS.2017.8206618
10.
Fung
,
A.
,
Loundagin
,
L. L.
, and
Edwards
,
W. B.
,
2017
, “
Experimental Validation of Finite Element Predicted Bone Strain in the Human Metatarsal
,”
J. Biomech.
,
60
, pp.
22
29
.10.1016/j.jbiomech.2017.06.010
11.
Gutekunst
,
D. J.
,
Patel
,
T. K.
,
Smith
,
K. E.
,
Commean
,
P. K.
,
Silva
,
M. J.
, and
Sinacore
,
D. R.
,
2013
, “
Predicting Ex Vivo Failure Loads in Human Metatarsals Using Bone Strength Indices Derived From Volumetric Quantitative Computed Tomography
,”
J. Biomech.
,
46
(
4
), pp.
745
750
.10.1016/j.jbiomech.2012.11.019
12.
Kwon
,
J. Y.
,
Campbell
,
J. T.
,
Myerson
,
M. S.
, and
Jeng
,
C. L.
,
2011
, “
Effect of a Steel Toe Cap on Forefoot Injury Pattern in a Cadaveric Model
,”
Foot Ankle Int.
,
32
(
4
), pp.
443
447
.10.3113/FAI.2011.0443
13.
Masson
,
C.
,
Thollon
,
L.
,
Cesari
,
D.
, and
Brunet
,
C.
,
2006
, “
Effects of Static High Compression on Human Foot-Ankle: Biomechanical Response and Injuries
,”
Surg. Radiol. Anat.
,
28
(
1
), pp.
46
53
.10.1007/s00276-005-0043-2
14.
Kalra
,
M.
,
Bahensky
,
R.
,
Mclachlin
,
S. D.
,
Cronin
,
D. S.
, and
Chandrashekar
,
N.
,
2022
, “
In-Situ Fracture Tolerance of the Metatarsals During Quasi-Static Compressive Loading of the Human Foot
,”
ASME J. Biomech. Eng.
,
144
(
4
), p.
041001
.10.1115/1.4052685
15.
Yoganandan
,
N.
,
Arun
,
M. W. J.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2015
, “
Lower Leg Injury Reference Values and Risk Curves From Survival Analysis for Male and Female Dummies: Meta-Analysis of Postmortem Human Subject Tests
,”
Traffic Inj. Prev.
,
16
(
1
), pp.
S100
S107
.10.1080/15389588.2015.1015118
16.
Manter
,
J. T.
,
1946
, “
Distribution of Compression Forces in the Joints of the Human Foot
,”
Anat. Rec.
,
96
(
3
), pp.
313
321
.10.1002/ar.1090960306
17.
Begeman
,
P.
, and Aekbote, K.,
1996
, “
Axial Load Strength and Some Ligaments Properties of the Ankle Joint
,”
Injury Prevention Through Biomechics Symposium Proceedings
,
Wayne State University
,
Detroit, MI
, May 9–10, pp.
125
135
.
18.
Funk
,
J. R.
,
Srinivasan
,
S. C. M.
,
Crandall
,
J. R.
,
Khaewpong
,
N.
,
Eppinger
,
R. H.
,
Jaffredo
,
A. S.
,
Potier
,
P.
, and
Petit
,
P. Y.
,
2002
, “
The Effects of Axial Preload and Dorsiflexion on the Tolerance of the Ankle/Subtalar Joint to Dynamic Inversion and Eversion
,”
SAE
Paper No. 2002-22-0013.10.4271/2002-22-0013
19.
Gallenberger
,
K.
,
Yoganandan
,
N.
, and
Pintar
,
F.
,
2013
, “
Biomechanics of Foot/Ankle Trauma With Variable Energy Impacts
,”
Ann. Adv. Automot. Med.
,
57
, pp.
123
132
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3861818/
20.
Hsu
,
C. C.
,
Tsai
,
W. C.
,
Chen
,
C. P. C.
,
Shau
,
Y. W.
,
Wang
,
C. L.
,
Chen
,
M. J. L.
, and
Chang
,
K. J.
,
2005
, “
Effects of Aging on the Plantar Soft Tissue Properties Under the Metatarsal Heads at Different Impact Velocities
,”
Ultrasound Med. Biol.
,
31
(
10
), pp.
1423
1429
.10.1016/j.ultrasmedbio.2005.05.009
21.
Kitagawa
,
Y.
,
Ichikawa
,
H.
,
King
,
A. I.
, and
Levine
,
R. S.
,
1998
, “
A Severe Ankle and Foot Injury in Frontal Crashes and Its Mechanism
,”
SAE
Paper No. 983145.10.4271/983145
22.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Boynton
,
M.
,
Begeman
,
P.
,
Prasad
,
P.
,
Kuppa
,
S. M.
,
Morgan
,
R. M.
, and
Eppinger
,
R. H.
,
1996
, “
Dynamic Axial Tolerance of the Human Foot-Ankle Complex
,”
SAE
Paper No. 962426.10.4271/962426
23.
Yoganandan
,
N.
,
Pintar
,
F. A.
,
Kumaresan
,
S.
, and
Boynton
,
M.
,
1997
, “
Axial Impact Biomechanics of the Human Foot-Ankle Complex
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
433
437
.10.1115/1.2798290
24.
Wu
,
G.
,
Van Der Helm
,
F. C. T.
,
Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint Motion - Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
25.
Dunham
,
C. E.
,
Takaki
,
S. E.
,
Johnson
,
J. A.
, and
Dunning
,
C. E.
,
2005
, “
Mechanical Properties of Cancellous Bone of the Distal Humerus
,”
Clin. Biomech.
,
20
(
8
), pp.
834
838
.10.1016/j.clinbiomech.2005.05.014
26.
Peters
,
A. E.
,
Akhtar
,
R.
,
Comerford
,
E. J.
, and
Bates
,
K. T.
,
2018
, “
The Effect of Ageing and Osteoarthritis on the Mechanical Properties of Cartilage and Bone in the Human Knee Joint
,”
Sci. Rep.
,
8
(
1
), pp.
1
13
.10.1038/s41598-018-24258-6
27.
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Banerjee
,
A.
,
2017
, “
Load-Based Lower Neck Injury Criteria for Females From Rear Impact From Cadaver Experiments
,”
Ann. Biomed, Eng.
,
45
(
5
), pp.
1194
1203
.10.1007/s10439-016-1773-5
You do not currently have access to this content.