Abstract

The lack of sufficient mechanical stimulation to the human bone, results in disuse osteoporosis. Low-intensity pulsed ultrasound (LIPUS) promotes fracture healing and the treatment of disuse osteoporosis, but its biomechanical mechanism remains unknown. Simulative research on the mechanical effects of LIPUS on disuse trabecular bone and osteoblasts have been performed. The von Mises stress of disuse trabecular bone and osteoblasts obviously increased under LIPUS irradiation. The average von Mises stress of osteoblasts were two orders of magnitude higher under the irradiation of simulant LIPUS than that without LIPUS irradiation, and the von Mises stress of osteoblasts was positively correlated with the amplitude of sound pressure excitation. The results showed that LIPUS irradiation could obviously improve the mechanical micro-environment of trabecular bone and osteoblasts to alleviate the lack of mechanical stimulation. The results of the research can reveal the biomechanical mechanism of LIPUS in the treatment of disuse osteoporosis to some extent and provide theoretical guidance for clinical treatment of disuse osteoporosis through physical methods.

References

1.
Kameo
,
Y.
,
Sakano
,
N.
, and
Adachi
,
T.
,
2020
, “
Theoretical Concept of Cortical to Cancellous Bone Transformation
,”
Bone Rep.
,
12
, p.
100260
.10.1016/j.bonr.2020.100260
2.
Pei
,
B. Q.
,
Wang
,
T. M.
, and
Wang
,
J. Q.
,
2008
, “
The Comprehensive Biomechanical Analysis of Microcosmic Trabecular Structure of Cancellous Bone
,”
Beijing Biomed. Eng.
,
27
(
2
), pp.
120
122
(in Chinese).
3.
Li
,
T. Y.
,
Chen
,
Z. B.
,
Gao
,
Y.
,
Zhu
,
L. S.
,
Yang
,
R. L.
,
Leng
,
H. J.
, and
Huo
,
B.
,
2020
, “
Fluid-Solid Coupling Numerical Simulation of Trabecular Bone Under Cyclic Loading in Different Directions
,”
J. Biomech.
,
109
, p.
109912
.10.1016/j.jbiomech.2020.109912
4.
Mullender
,
M. G.
, and
Huiskes
,
R.
,
1995
, “
Proposal for the Regulatory Mechanism of Wolff's Law
,”
J. Orthop. Res.
,
13
(
4
), pp.
503
512
.10.1002/jor.1100130405
5.
Romano
,
C. L.
,
Romano
,
D.
, and
Logoluso
,
N.
,
2009
, “
Low-Intensity Pulsed Ultrasound for the Treatment of Bone Delayed Union or Nonunion: A Review
,”
Ultrasound Med. Biol.
,
35
(
4
), pp.
529
536
.10.1016/j.ultrasmedbio.2008.09.029
6.
Sun
,
S. X.
,
Tang
,
L.
,
Zhao
,
T. T.
,
Kang
,
Y. T.
,
Sun
,
L. J.
,
Liu
,
C. C.
,
Li
,
Y.
,
Xu
,
F.
,
Qin
,
Y. X.
, and
Ta
,
D.
,
2021
, “
Longitudinal Effects of Low-Intensity Pulsed Ultrasound on Osteoporosis and Osteoporotic Bone Defect in Ovariectomized Rats
,”
Ultrasonics
,
113
, p.
106360
.10.1016/j.ultras.2021.106360
7.
Du
,
J.
,
Li
,
S.
, and
Silberschmidt
,
V. V.
,
2020
, “
Trabecular Bone Remodelling: Finite-Element Simulation
,”
Procedia Struct. Integr.
,
28
, pp.
577
583
.10.1016/j.prostr.2020.10.067
8.
Cao
,
Q.
,
Zhang
,
J. Y.
,
Liu
,
H. T.
,
Wu
,
Q.
,
Chen
,
J. C.
, and
Chen
,
G. Q.
,
2014
, “
The Mechanism of Anti-Osteoporosis Effects of 3-Hydroxybutyrate and Derivatives Under Simulated Microgravity
,”
Biomaterials
,
35
(
28
), pp.
8273
8283
.10.1016/j.biomaterials.2014.06.020
9.
Lin
,
X.
,
Xiao
,
Y. Y.
,
Zhang
,
K. W.
,
Yang
,
D.
,
Miao
,
Z. P.
,
Deng
,
X. N.
,
Chen
,
Z. H.
, and
Qian
,
A. R.
,
2022
, “
Knockdown of MACF1 Inhibits the Migration and Cytoskeletal Arrangement of Pre-Osteoclasts Induced by Simulated Microgravity
,”
Acta Astronaut.
,
190
, pp.
149
159
.10.1016/j.actaastro.2021.10.010
10.
Cao
,
H. J.
,
Feng
,
L. F.
,
Wu
,
Z. X.
,
Hou
,
W. T.
,
Li
,
S. J.
,
Hao
,
Y. L.
, and
Wu
,
L.
,
2017
, “
Effect of Low-Intensity Pulsed Ultrasound on the Biological Behavior of Osteoblasts on Porous Titanium Alloy Scaffolds: An In Vitro and In Vivo Study
,”
Mater. Sci. Eng., C
,
80
, pp.
7
17
.10.1016/j.msec.2017.05.078
11.
Suzuki
,
N.
,
Hanmoto
,
T.
,
Yano
,
S.
,
Furusawa
,
Y.
,
Ikegame
,
M.
,
Tabuchi
,
Y.
,
Kondo
,
T.
,
Kitamura
,
K. I.
,
Endo
,
M.
,
Yamamoto
,
T.
,
Sekiguchi
,
T.
,
Urata
,
M.
,
Mikuni-Takagaki
,
Y.
, and
Hattori
,
A.
,
2016
, “
Low-Intensity Pulsed Ultrasound Induces Apoptosis in Osteoclasts: Fish Scales Are a Suitable Model for the Analysis of Bone Metabolism by Ultrasound
,”
Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol.
,
195
, pp.
26
31
.10.1016/j.cbpa.2016.01.022
12.
Kusuyama
,
J.
,
Bandow
,
K.
,
Shamoto
,
M.
,
Kakimoto
,
K.
,
Ohnishi
,
T.
, and
Matsuguchi
,
T.
,
2014
, “
Low Intensity Pulsed Ultrasound (LIPUS) Influences the Multilineage Differentiation of Mesenchymal Stem and Progenitor Cell Lines Through ROCK-Cot/Tpl2-MEK-ERK Signaling Pathway
,”
J. Biol. Chem.
,
289
(
15
), pp.
10330
10344
.10.1074/jbc.M113.546382
13.
Carvalho
,
D. C. L.
, and
Cliquet
,
A.
,
2004
, “
The Action of Low-Intensity Pulsed Ultrasound in Bones of Osteopenic Rats
,”
Artif. Organs
,
28
(
1
), pp.
114
118
.10.1111/j.1525-1594.2004.07091.x
14.
Wu
,
S. L.
,
Kawahara
,
Y.
,
Manabe
,
T.
,
Ogawa
,
K.
,
Matsumoto
,
M.
,
Sasaki
,
A.
, and
Yuge
,
L.
,
2009
, “
Low-Intensity Pulsed Ultrasound Accelerates Osteoblast Differentiation and Promotes Bone Formation in an Osteoporosis Rat Model
,”
Pathobiology
,
76
(
3
), pp.
99
107
.10.1159/000209387
15.
Pounder
,
N. M.
, and
Harrison
,
A. J.
,
2008
, “
Low Intensity Pulsed Ultrasound for Fracture Healing: A Review of the Clinical Evidence and the Associated Biological Mechanism of Action
,”
Ultrasonics
,
48
(
4
), pp.
330
338
.10.1016/j.ultras.2008.02.005
16.
Claes
,
L.
, and
Willie
,
B.
,
2007
, “
The Enhancement of Bone Regeneration by Ultrasound
,”
Prog. Biophys. Mol. Biol.
,
93
(
1–3
), pp.
384
398
.10.1016/j.pbiomolbio.2006.07.021
17.
Mansjur
,
K. Q.
,
Kuroda
,
S.
,
Izawa
,
T.
,
Maeda
,
Y.
,
Sato
,
M.
,
Watanabe
,
K.
,
Horiuchi
,
S.
, and
Tanaka
,
E.
,
2016
, “
The Effectiveness of Human Parathyroid Hormone and Low-Intensity Pulsed Ultrasound on the Fracture Healing in Osteoporotic Bones
,”
Ann. Biomed. Eng.
,
44
(
8
), pp.
2480
2488
.10.1007/s10439-015-1533-y
18.
Sun
,
L. J.
,
Sun
,
S. X.
,
Zhao
,
X. J.
,
Zhang
,
J.
,
Guo
,
J. Z.
,
Tang
,
L.
, and
Ta
,
D.
,
2019
, “
Inhibition of Myostatin Signal Pathway May Be Involved in Low-Intensity Pulsed Ultrasound Promoting Bone Healing
,”
J. Med. Ultrason.
,
46
(
4
), pp.
377
388
.10.1007/s10396-019-00962-2
19.
Zhou
,
H. B.
,
Hou
,
Y. F.
,
Zhu
,
Z. M.
,
Xiao
,
W. X.
,
Xu
,
Q.
,
Li
,
L.
,
Li
,
X.
, and
Chen
,
W. C.
,
2016
, “
Effects of Low-Intensity Pulsed Ultrasound on Implant Osseointegration in Ovariectomized Rats
,”
J. Ultrasound Med.
,
35
(
4
), pp.
747
754
.10.7863/ultra.15.01083
20.
Gleizal
,
A.
,
Ferreira
,
S.
,
Lavandier
,
B.
,
Simon
,
B.
,
Beziat
,
J. L.
, and
Bera
,
J. C.
,
2010
, “
The Impact of Low Intensity Pulsed Ultrasound on Mouse Skull Bone Osteoblast Cultures
,”
Rev. Stomatol. Chir. Maxillo-Fac.
,
111
(
5–6
), pp.
280
285
.10.1016/j.stomax.2009.07.013
21.
Carina
,
V.
,
Costa
,
V.
,
Pagani
,
S.
,
De Luca
,
A.
,
Raimondi
,
L.
,
Bellavia
,
D.
,
Setti
,
S.
,
Fini
,
M.
, and
Giavaresi
,
G.
,
2018
, “
Inhibitory Effects of Low Intensity Pulsed Ultrasound on Osteoclastogenesis Induced In Vitro by Breast Cancer Cells
,”
J. Exp. Clin. Cancer Res.
,
37
(
1
), p.
197
.10.1186/s13046-018-0868-2
22.
Uddin
,
S. M. Z.
,
Hadjiargyrou
,
M.
,
Cheng
,
J. Q.
,
Zhang
,
S.
,
Hu
,
M. Y.
, and
Qin
,
Y. X.
,
2013
, “
Reversal of the Detrimental Effects of Simulated Microgravity on Human Osteoblasts by Modified Low Intensity Pulsed Ultrasound
,”
Ultrasound Med. Biol.
,
39
(
5
), pp.
804
812
.10.1016/j.ultrasmedbio.2012.11.016
23.
Jiang
,
W. J.
,
Sun
,
S. X.
,
Xu
,
Z.
, and
Ta
,
D. A.
,
2017
, “
Finite Element Simulation of Local Sound Field Distribution When LIPUS Irradiates Bone Cells
,”
Tech. Acoust.
,
36
(
6
), pp.
549
555
(in Chinese).
24.
Wang
,
L. P.
,
Hsu
,
H. Y.
,
Li
,
X.
, and
Xian
,
C. J.
,
2016
, “
Effects of Frequency and Acceleration Amplitude on Osteoblast Mechanical Vibration Responses: A Finite Element Study
,”
BioMed Res. Int.
,
2016
, pp.
1
16
.10.1155/2016/2735091
25.
Kubo
,
T.
,
Fujimori
,
K.
,
Cazier
,
N.
,
Saeki
,
T.
, and
Matsukawa
,
M.
,
2011
, “
Properties of Ultrasonic Waves in Bovine Bone Marrow
,”
Ultrasound Med. Biol.
,
37
(
11
), pp.
1923
1929
.10.1016/j.ultrasmedbio.2011.08.005
26.
Metzger
,
T. A.
,
Schwaner
,
S. A.
,
LaNeve
,
A. J.
,
Kreipke
,
T. C.
, and
Niebur
,
G. L.
,
2015
, “
Pressure and Shear Stress in Trabecular Bone Marrow During Whole Bone Loading
,”
J. Biomech.
,
48
(
12
), pp.
3035
3043
.10.1016/j.jbiomech.2015.07.028
27.
Frost
,
H. M.
,
2004
, “
A 2003 Update of Bone Physiology and Wolff's Law for Clinicians
,”
Angle Orthodontist
,
74
(
1
), pp.
3
15
.https://pubmed.ncbi.nlm.nih.gov/15038485/
28.
Tang
,
L.
,
An
,
S. S.
,
Zhang
,
Z. H.
,
Fan
,
X. S.
,
Guo
,
J. Z.
,
Sun
,
L. J.
, and
Ta
,
D.
,
2021
, “
MSTN Is a Key Mediator for Low-Intensity Pulsed Ultrasound Preventing Bone Loss in Hindlimb-Suspended Rats
,”
Bone
,
143
, p.
115610
.10.1016/j.bone.2020.115610
29.
Sun
,
S. X.
,
Li
,
L. R.
,
Tang
,
L.
,
Guo
,
J. Z.
, and
Ta
,
D. A.
,
2016
, “
Simulation of the LIPUS-Induced Temperature Field in Bone Using Finite Element Method
,”
Proceedings of the 2016 National academic meeting on Acoustics Academic
, Wuhan, China, Oct. 28, pp.
401
404
(in Chinese).
30.
Sun
,
S. X.
,
Sun
,
L. J.
,
Kang
,
Y. T.
,
Tang
,
L.
,
Qin
,
Y. X.
, and
Ta
,
D. A.
,
2020
, “
Therapeutic Effects of Low-Intensity Pulsed Ultrasound on Osteoporosis in Ovariectomized Rats: Intensity-Dependent Study
,”
Ultrasound Med. Biol.
,
46
(
1
), pp.
108
121
.10.1016/j.ultrasmedbio.2019.08.025
31.
Angle
,
S. R.
,
Sena
,
K.
,
Sumner
,
D. R.
, and
Virdi
,
A. S.
,
2011
, “
Osteogenic Differentiation of Rat Bone Marrow Stromal Cells by Various Intensities of Low-Intensity Pulsed Ultrasound
,”
Ultrasonics
,
51
(
3
), pp.
281
288
.10.1016/j.ultras.2010.09.004
32.
Uddin
,
S. M. Z.
, and
Qin
,
Y. X.
,
2015
, “
Dynamic Acoustic Radiation Force Retains Bone Structural and Mechanical Integrity in a Functional Disuse Osteopenia Model
,”
Bone
,
75
, pp.
8
17
.10.1016/j.bone.2015.01.020
33.
Wang
,
L.
,
Zeng
,
B. F.
, and
Zhang
,
X. L.
,
2005
, “
Experimental Treatment of Osteoporotic Fracture in Rats by Low-Intensity Pulsed Ultrasound
,”
Chin. J. Osteoporosis
, 2005(
1
), pp.
46
49
(in Chinese).
34.
Costa
,
V.
,
Carina
,
V.
,
Fontana
,
S.
,
De Luca
,
A.
,
Monteleone
,
F.
,
Pagani
,
S.
,
Sartori
,
M.
,
Setti
,
S.
,
Faldini
,
C.
,
Alessandro
,
R.
,
Fini
,
M.
, and
Giavaresi
,
G.
,
2018
, “
Osteogenic Commitment and Differentiation of Human Mesenchymal Stem Cells by Low-Intensity Pulsed Ultrasound Stimulation
,”
J. Cell. Physiol.
,
233
(
2
), pp.
1558
1573
.10.1002/jcp.26058
35.
Cheng
,
C. C.
,
Chung
,
C. A.
,
Chang
,
C. J.
,
Cheng
,
Y. C.
,
Huang
,
C. J.
,
Chien
,
C. C.
, and
Lin
,
H. T.
,
2022
, “
Hydrostatic Pressure Facilitates Calcium Deposition and Osteogenic Gene Expression in the Osteoblastic Differentiation of Placenta-Derived Multipotent Cells
,”
Taiwan. J. Obstet. Gynecol.
,
61
(
2
), pp.
270
276
.10.1016/j.tjog.2022.02.014
36.
Nagatomi
,
J.
,
Arulanandam
,
B. R.
,
Metzger
,
D. W.
,
Meunier
,
A.
, and
Bizios
,
R.
,
2003
, “
Cyclic Pressure Affects Osteoblast Functions Pertinent to Osteogenesis
,”
Ann. Biomed. Eng.
,
31
(
8
), pp.
917
923
.10.1114/1.1590663
37.
Wang
,
D. W.
,
Wang
,
H.
, and
Dong
,
F. S.
,
2016
, “
The Research Progress in the Effect of Different Mechanical Stimulation on the Osteoblast
,”
Chin. J. Osteoporosis
,
22
(
5
), pp.
652
656
(in Chinese).
38.
Mitsui
,
N.
,
Suzuki
,
N.
,
Maeno
,
M.
,
Mayahara
,
K.
,
Yanagisawa
,
M.
,
Otsuka
,
K.
, and
Shimizu
,
N.
,
2005
, “
Optimal Compressive Force Induces Bone Formation Via Increasing Bone Sialoprotein and Prostaglandin E-2 Production Appropriately
,”
Life Sci.
,
77
(
25
), pp.
3168
3182
.10.1016/j.lfs.2005.03.037
39.
Frost
,
H. M.
,
1987
, “
Bone ‘Mass’ and the ‘Mechanostat’: A Proposal
,”
Anat. Rec.
,
219
(
1
), pp.
1
9
.10.1002/ar.1092190104
You do not currently have access to this content.