Abstract

Biphasic poro-viscoelastic constitutive material model (BPVE) captures both the fluid flow dependent and independent behavior of cartilage under stress relaxation type indentation. A finite element model based on BPVE formulation was developed to explore the sensitivity of the model to Young's modulus, Poisson's ratio, permeability, and viscoelastic constitutive parameters expressed in terms of Prony series coefficients. Then we fit the numerical model to experimental force versus time curves from stress relaxation indents on bovine tibial plateaus to extract the material properties. Measurements were made over the period of two days to capture the material property changes that resulted from trypsin-induced degradation. We measured spatial and temporal changes in mechanical properties in the cartilage. The areas of degradation were characterized by an increase in both permeability and summation of Prony series shear relaxation amplitude constants. These findings suggest that cartilage degradation reduces the intrinsic viscoelastic properties of the solid phase of the tissue in addition to impairing its capacity to offer frictional drag to the interstitial fluid flow (permeability). The changes in material properties are measurable well before structural degradation occurs.

References

1.
Smith
,
D. W.
,
Gardiner
,
B. S.
,
Zhang
,
L.
, and
Grodzinsky
,
A. J.
,
2019
, “
Introduction to Articular Cartilage
,”
Articular Cartilage Dynamics
,
Springer
,
Singapore
, pp.
1
63
.
2.
Horvai
,
A.
,
2011
, “
Anatomy and Histology of Cartilage
,”
Cartilage Imaging: Significance, Techniques, and New Developments
,
T.
Link
, ed.,
Springer
,
New York
, pp.
1
10
.
3.
Sophia Fox
,
A. J.
,
Bedi
,
A.
, and
Rodeo
,
S. A.
,
2009
, “
The Basic Science of Articular Cartilage: Structure, Composition, and Function
,”
Sports Health
,
1
(
6
), pp.
461
468
.10.1177/1941738109350438
4.
Gahunia
,
H. K.
, and
Pritzker
,
K. P. H.
,
2020
, “
Structure and Function of Articular Cartilage
,”
Articular Cartilage of the Knee
,
H.
Gahunia
,
A.
Gross
,
K.
Pritzker
,
P.
Babyn
, and
L.
Murnaghan
, eds.,
Springer
,
New York
, pp.
3
70
.
5.
Patel
,
J. M.
,
Wise
,
B. C.
,
Bonnevie
,
E. D.
, and
Mauck
,
R. L.
,
2019
, “
A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering
,”
Tissue Eng. Part C Methods
,
25
(
10
), pp.
593
608
.10.1089/ten.tec.2019.0116
6.
Setton
,
L. A.
,
Zhu
,
W.
, and
Mow
,
V. C.
,
1993
, “
The Biphasic Poroviscoelastic Behavior of Articular Cartilage: Role of the Surface Zone in Governing the Compressive Behavior
,”
J. Biomech.
,
26
(
4–5
), pp.
581
592
.10.1016/0021-9290(93)90019-B
7.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J Biomech Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
8.
Miller
,
G. J.
, and
Morgan
,
E. F.
,
2010
, “
Use of Microindentation to Characterize the Mechanical Properties of Articular Cartilage: Comparison of Biphasic Material Properties Across Length Scales
,”
Osteoarthritis Cartilage
,
18
(
8
), pp.
1051
1057
.10.1016/j.joca.2010.04.007
9.
Olberding
,
J. E.
, and
Francis Suh
,
J. K.
,
2006
, “
A Dual Optimization Method for the Material Parameter Identification of a Biphasic Poroviscoelastic Hydrogel: Potential Application to Hypercompliant Soft Tissues
,”
J. Biomech.
,
39
(
13
), pp.
2468
2475
.10.1016/j.jbiomech.2005.07.019
10.
Mak
,
A. F.
,
1986
, “
The Apparent Viscoelastic Behavior of Articular Cartilage - The Contributions From the Intrinsic Matrix Viscoelasticity and Interstitial Fluid Flows
,”
ASME J. Biomech. Eng.
,
108
(
2
), pp.
123
130
.10.1115/1.3138591
11.
Seifzadeh
,
A.
,
Oguamanam
,
D. C.
,
Trutiak
,
N.
,
Hurtig
,
M.
, and
Papini
,
M.
,
2012
, “
Determination of Nonlinear Fibre-Reinforced Biphasic Poroviscoelastic Constitutive Parameters of Articular Cartilage Using Stress Relaxation Indentation Testing and an Optimizing Finite Element Analysis
,”
Comput. Methods Prog. Biomed.
,
107
(
2
), pp.
315
326
.10.1016/j.cmpb.2011.07.004
12.
Berteau
,
J. P.
,
Oyen
,
M.
, and
Shefelbine
,
S. J.
,
2016
, “
Permeability and Shear Modulus of Articular Cartilage in Growing Mice
,”
Biomech. Model. Mechanobiol.
,
15
(
1
), pp.
205
212
.10.1007/s10237-015-0671-3
13.
Hu
,
Y.
,
Zhao
,
X.
,
Vlassak
,
J. J.
, and
Suo
,
Z.
,
2010
, “
Using Indentation to Characterize the Poroelasticity of Gels
,”
Appl. Phys. Lett.
,
96
(
12
), p.
121904
.10.1063/1.3370354
14.
Carney
,
S. L.
,
Billingham
,
M. E.
,
Muir
,
H.
, and
Sandy
,
J. D.
,
1984
, “
Demonstration of Increased Proteoglycan Turnover in Cartilage Explants From Dogs With Experimental Osteoarthritis
,”
J. Orthop. Res.
,
2
(
3
), pp.
201
206
.10.1002/jor.1100020301
15.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.10.3233/BIR-1980-171-213
16.
Appleyard
,
R. C.
,
Burkhardt
,
D.
,
Ghosh
,
P.
,
Read
,
R.
,
Cake
,
M.
,
Swain
,
M. V.
, and
Murrell
,
G. A.
,
2003
, “
Topographical Analysis of the Structural, Biochemical and Dynamic Biomechanical Properties of Cartilage in an Ovine Model of Osteoarthritis
,”
Osteoarthritis Cartilage
,
11
(
1
), pp.
65
77
.10.1053/joca.2002.0867
17.
Harris
,
E. D.
, Jr.
,
Parker
,
H. G.
,
Radin
,
E. L.
, and
Krane
,
S. M.
,
1972
, “
Effects of Proteolytic Enzymes on Structural and Mechanical Properties of Cartilage
,”
Arthritis Rheumat.
,
15
(
5
), pp.
497
503
.10.1002/art.1780150505
18.
Buckwalter
,
J. A.
, and
Mankin
,
H. J.
,
1998
, “
Articular Cartilage: Degeneration and Osteoarthritis, Repair, Regeneration, and Transplantation
,”
Instruct. Course Lect.
,
47
(
1
), pp.
487
504
.https://pubmed.ncbi.nlm.nih.gov/9571450/
19.
Huang
,
C. Y.
,
Mow
,
V. C.
, and
Ateshian
,
G. A.
,
2001
, “
The Role of Flow-Independent Viscoelasticity in the Biphasic Tensile and Compressive Responses of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
123
(
5
), pp.
410
417
.10.1115/1.1392316
20.
Rodriguez-Florez
,
N.
,
Oyen
,
M. L.
, and
Shefelbine
,
S. J.
,
2013
, “
Insight Into Differences in Nanoindentation Properties of Bone
,”
J. Mech. Behav. Biomed. Mater.
,
18
(
1
), pp.
90
99
.10.1016/j.jmbbm.2012.11.005
21.
Oyen
,
M.
,
Shean
,
T.
,
Strange
,
D.
, and
Galli
,
M.
,
2012
, “
Size Effects in Indentation of Hydrated Biological Tissues
,”
J. Mater. Res.
,
27
(
1
), pp.
245
255
.10.1557/jmr.2011.322
You do not currently have access to this content.