Abstract

Axial tibial rotation is a characteristic motion of the knee, but how it occurs with knee flexion is controversial. We investigated the mechanisms of tibial rotations by analyzing in vivo tibiofemoral articulations. Twenty knees of 20 living human subjects were investigated during a weightbearing flexion from full extension to maximal flexion using a dual fluoroscopic imaging system. Tibiofemoral articular contact motions on medial and lateral femoral condyles and tibial surfaces were measured at flexion intervals of 15 deg from 0 deg to 120 deg. Axial tibial rotations due to the femoral and tibial articular motions were compared. Articular contact distances were longer on femoral condyles than on tibial surfaces at all flexion intervals (p < 0.05). The articular distance on medial femoral condyle is longer than on lateral side during flexion up to 60 deg. The internal tibial rotation was 6.8 ± 4.5 deg (Mean ± SD) at the flexion interval of 0–15 deg, where 6.1 ± 2.6 deg was due to articulations on femoral condyles and 0.7 ± 5.1 deg due to articulations on tibial surfaces (p < 0.05). The axial tibial rotations due to articulations on femoral condyles are significantly larger than those on tibial surfaces until 60 deg of flexion (p < 0.05). Minimal additional axial tibial rotations were observed beyond 60 deg of flexion. The axial tibial rotations were mainly attributed to uneven articulations on medial and lateral femoral condyles. These data can provide new insights into the understanding of mechanisms of axial tibial rotations and serve as baseline knowledge for improvement of knee surgeries.

References

1.
Kraeutler
,
M. J.
,
Welton
,
K. L.
,
Chahla
,
J.
,
LaPrade
,
R. F.
, and
McCarty
,
E. C.
,
2018
, “
Current Concepts of the Anterolateral Ligament of the Knee: Anatomy, Biomechanics, and Reconstruction
,”
Am. J. Sports Med.
,
46
(
5
), pp.
1235
1242
.10.1177/0363546517701920
2.
Angerame
,
M. R.
,
Holst
,
D. C.
,
Jennings
,
J. M.
,
Komistek
,
R. D.
, and
Dennis
,
D. A.
,
2019
, “
Total Knee Arthroplasty Kinematics
,”
J. Arthroplasty
,
34
(
10
), pp.
2502
2510
.10.1016/j.arth.2019.05.037
3.
Amaro
,
J. T.
,
Novaretti
,
J. V.
,
Astur
,
D. C.
,
Cavalcante
,
E. L. B.
,
Rodrigues Junior
,
A. G.
,
Debieux
,
P.
,
Kaleka
,
C. C.
, et al.,
2020
, “
Higher Axial Tibiofemoral Rotation and Functional Outcomes With Mobile-Bearing Compared With Fixed-Bearing Total Knee Arthroplasty at 1- but Not at 2-Year Follow-Up-a Randomized Clinical Trial
,”
J. Knee Surg.
,
33
(
5
), pp.
474
480
.10.1055/s-0039-1678675
4.
Harman
,
M. K.
,
Banks
,
S. A.
,
Kirschner
,
S.
, and
Lützner
,
J.
,
2012
, “
Prosthesis Alignment Affects Axial Rotation Motion After Total Knee Replacement: A Prospective In Vivo Study Combining Computed Tomography and Fluoroscopic Evaluations
,”
BMC Musculoskeletal Disord.
,
13
(
1
), p.
206
.10.1186/1471-2474-13-206
5.
Dennis
,
D. A.
,
Komistek
,
R. D.
,
Mahfouz
,
M. R.
,
Walker
,
S. A.
, and
Tucker
,
A.
,
2004
, “
A Multicenter Analysis of Axial Femorotibial Rotation After Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
, (
428
), pp.
180
189
.10.1097/01.blo.0000148777.98244.84
6.
Maderbacher
,
G.
,
Keshmiri
,
A.
,
Springorum
,
H. R.
,
Maderbacher
,
H.
,
Grifka
,
J.
, and
Baier
,
C.
,
2017
, “
Influence of Component Rotation in Total Knee Arthroplasty on Tibiofemoral Kinematics-A Cadaveric Investigation
,”
J. Arthroplasty
,
32
(
9
), pp.
2869
2877
.10.1016/j.arth.2017.03.055
7.
Watanabe
,
T.
,
Gamada
,
K.
,
Koga
,
H.
,
Sekiya
,
I.
,
Muneta
,
T.
, and
Jinno
,
T.
,
2021
, “
Consistent Femoral External Rotation During Weight-Bearing Knee Flexion is Associated With Better Patient-Reported Pain and Mediolateral Balance After Total Knee Arthroplasty
,”
Clin. Biomech. (Bristol, Avon)
,
88
, p.
105438
.10.1016/j.clinbiomech.2021.105438
8.
Andersen
,
H. N.
, and
Dyhre-Poulsen
,
P.
,
1997
, “
The Anterior Cruciate Ligament Does Play a Role in Controlling Axial Rotation in the Knee
,”
Knee Surg. Sports Traumatol. Arthroscopy Off. J. ESSKA
,
5
(
3
), pp.
145
149
.10.1007/s001670050042
9.
Yazdi
,
H.
,
Mallakzadeh
,
M.
,
Sadat Farshidfar
,
S.
,
Givehchian
,
B.
,
Daneshparvar
,
H.
, and
Behensky
,
H.
,
2016
, “
The Effect of Tibial Rotation on Knee Medial and Lateral Compartment Contact Pressure
,”
Knee Surg. Sports Traumatol. Arthroscopy Off. J. ESSKA
,
24
(
1
), pp.
79
83
.10.1007/s00167-014-3321-x
10.
Kozanek
,
M.
,
Hosseini
,
A.
,
Liu
,
F.
,
Van de Velde
,
S. K.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2009
, “
Tibiofemoral Kinematics and Condylar Motion During the Stance Phase of Gait
,”
J. Biomech.
,
42
(
12
), pp.
1877
1884
.10.1016/j.jbiomech.2009.05.003
11.
Most
,
E.
,
Axe
,
J.
,
Rubash
,
H.
, and
Li
,
G.
,
2004
, “
Sensitivity of the Knee Joint Kinematics Calculation to Selection of Flexion Axes
,”
J. Biomech.
,
37
(
11
), pp.
1743
1748
.10.1016/j.jbiomech.2004.01.025
12.
Zhou
,
C.
,
Zhang
,
Z.
,
Rao
,
Z.
,
Foster
,
T.
,
Bedair
,
H.
, and
Li
,
G.
,
2021
, “
Physiological Articular Contact Kinematics and Morphological Femoral Condyle Translations of the Tibiofemoral Joint
,”
J. Biomech.
,
123
, p.
110536
.10.1016/j.jbiomech.2021.110536
13.
Qi
,
W.
,
Hosseini
,
A.
,
Tsai
,
T. Y.
,
Li
,
J. S.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2013
, “
In Vivo Kinematics of the Knee During Weight Bearing High Flexion
,”
J. Biomech.
,
46
(
9
), pp.
1576
1582
.10.1016/j.jbiomech.2013.03.014
14.
Yin
,
P.
,
Li
,
J. S.
,
Kernkamp
,
W. A.
,
Tsai
,
T. Y.
,
Baek
,
S. H.
,
Hosseini
,
A.
,
Lin
,
L.
, et al.,
2017
, “
Analysis of In-Vivo Articular Cartilage Contact Surface of the Knee During a Step-Up Motion
,”
Clini. Biomech. (Bristol, Avon
),
49
, pp.
101
106
.10.1016/i.clinbiomech.2017.09.005
15.
Liu
,
B.
,
Lad
,
N. K.
,
Collins
,
A. T.
,
Ganapathy
,
P. K.
,
Utturkar
,
G. M.
,
McNulty
,
A. L.
,
Spritzer
,
C. E.
, et al.,
2017
, “
In Vivo Tibial Cartilage Strains in Regions of Cartilage-to-Cartilage Contact and Cartilage-to-Meniscus Contact in Response to Walking
,”
Am. J. Sports Med.
,
45
(
12
), pp.
2817
2823
.10.1177/0363546517712506
16.
Carter
,
T. E.
,
Taylor
,
K. A.
,
Spritzer
,
C. E.
,
Utturkar
,
G. M.
,
Taylor
,
D. C.
,
Moorman
,
C. T.
, 3rd
,
Garrett
,
W. E.
, et al.,
2015
, “
In Vivo Cartilage Strain Increases Following Medial Meniscal Tear and Correlates With Synovial Fluid Matrix Metalloproteinase Activity
,”
J. Biomech.
,
48
(
8
), pp.
1461
1468
.10.1016/j.jbiomech.2015.02.030
17.
Asano
,
T.
,
Akagi
,
M.
,
Tanaka
,
K.
,
Tamura
,
J.
, and
Nakamura
,
T.
,
2001
, “
In Vivo Three-Dimensional Knee Kinematics Using a Biplanar Image-Matching Technique
,”
Clin. Orthop. Relat. Res.
, (
388
), pp.
157
166
.10.1097/00003086-200107000-00023
18.
Pinskerova
,
V.
,
Johal
,
P.
,
Nakagawa
,
S.
,
Sosna
,
A.
,
Williams
,
A.
,
Gedroyc
,
W.
, and
Freeman
,
M. A.
,
2004
, “
Does the Femur Roll-Back With Flexion?
,”
J. Bone Jt. Surg. Br.
,
86-B
(
6
), pp.
925
931
.10.1302/0301-620X.86B6.14589
19.
Walker
,
P. S.
,
Heller
,
Y.
,
Yildirim
,
G.
, and
Immerman
,
I.
,
2011
, “
Reference Axes for Comparing the Motion of Knee Replacements With the Anatomic Knee
,”
Knee
,
18
(
5
), pp.
312
316
.10.1016/j.knee.2010.07.005
20.
Hoshino
,
Y.
, and
Tashman
,
S.
,
2012
, “
Internal Tibial Rotation During In Vivo, Dynamic Activity Induces Greater Sliding of Tibio-Femoral Joint Contact on the Medial Compartment
,”
Knee Surg. Sports Traumatol. Arthroscopy Off. J. ESSKA
,
20
(
7
), pp.
1268
1275
.10.1007/s00167-011-1731-6
21.
Wretenberg
,
P.
,
Ramsey
,
D. K.
, and
Nemeth
,
G.
,
2002
, “
Tibiofemoral Contact Points Relative to Flexion Angle Measured With MRI
,”
Clin. Biomech. (Bristol, Avon
),
17
(
6
), pp.
477
485
.10.1016/S0268-0033(02)00036-0
22.
Nicolet-Petersen
,
S.
,
Saiz
,
A.
,
Shelton
,
T.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “
Small Differences in Tibial Contact Locations Following Kinematically Aligned TKA From the Native Contralateral Knee
,”
Knee Surg. Sports Traumatol. Arthroscopy Off. J. ESSKA
,
28
(
9
), pp.
2893
2904
.10.1007/s00167-019-05658-1
23.
DeFrate
,
L. E.
,
Sun
,
H.
,
Gill
,
T. J.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2004
, “
In Vivo Tibiofemoral Contact Analysis Using 3D MRI-Based Knee Models
,”
J. Biomech.
,
37
(
10
), pp.
1499
1504
.10.1016/j.jbiomech.2004.01.012
24.
Li
,
G.
,
Zhou
,
C.
,
Zhang
,
Z.
,
Foster
,
T.
, and
Bedair
,
H.
,
2022
, “
Articulation of the Femoral Condyle During Knee Flexion
,”
J. Biomech.
,
131
, p.
110906
.10.1016/j.jbiomech.2021.110906
25.
Rao
,
Z.
,
Zhou
,
C.
,
Zhang
,
Q.
,
Kernkamp
,
W. A.
,
Wang
,
J.
,
Cheng
,
L.
,
Foster
,
T. E.
, et al.,
2021
, “
There Are Isoheight Points That Measure Constant Femoral Condyle Heights Along the Knee Flexion Path
,”
Knee Surg. Sports Traumatol. Arthroscopy Off. J. ESSKA
,
29
(
2
), pp.
600
607
.10.1007/s00167-020-05990-x
26.
Li
,
G.
,
Van de Velde
,
S. K.
, and
Bingham
,
J. T.
,
2008
, “
Validation of a Non-Invasive Fluoroscopic Imaging Technique for the Measurement of Dynamic Knee Joint Motion
,”
J. Biomech.
,
41
(
7
), pp.
1616
1622
.10.1016/j.jbiomech.2008.01.034
27.
Dabirrahmani
,
D.
, and
Hogg
,
M.
,
2017
, “
Modification of the Grood and Suntay Joint Coordinate System Equations for Knee Joint Flexion
,”
Med. Eng. Phys.
,
39
, pp.
113
116
.10.1016/j.medengphy.2016.10.006
28.
Eckhoff
,
D.
,
Hogan
,
C.
,
DiMatteo
,
L.
,
Robinson
,
M.
, and
Bach
,
J.
,
2007
, “
Difference Between the Epicondylar and Cylindrical Axis of the Knee
,”
Clin. Orthop. Relat. Res.
,
461
, pp.
238
244
.10.1097/BLO.0b013e318112416b
29.
Feng
,
Y.
,
Tsai
,
T. Y.
,
Li
,
J. S.
,
Rubash
,
H. E.
,
Li
,
G.
, and
Freiberg
,
A.
,
2016
, “
In-Vivo Analysis of Flexion Axes of the Knee: Femoral Condylar Motion During Dynamic Knee Flexion
,”
Clin. Biomech. (Bristol, Avon)
,
32
, pp.
102
107
.10.1016/j.clinbiomech.2015.12.006
30.
Mannel
,
H.
,
Marin
,
F.
,
Claes
,
L.
, and
Durselen
,
L.
,
2004
, “
Establishment of a Knee-Joint Coordinate System From Helical Axes Analysis–a Kinematic Approach Without Anatomical Referencing
,”
IEEE Trans. Biomed. Eng.
,
51
(
8
), pp.
1341
1347
.10.1109/TBME.2004.828051
31.
Miranda
,
D. L.
,
Rainbow
,
M. J.
,
Leventhal
,
E. L.
,
Crisco
,
J. J.
, and
Fleming
,
B. C.
,
2010
, “
Automatic Determination of Anatomical Coordinate Systems for Three-Dimensional Bone Models of the Isolated Human Knee
,”
J. Biomech.
,
43
(
8
), pp.
1623
1626
.10.1016/j.jbiomech.2010.01.036
32.
Oussedik
,
S.
,
Scholes
,
C.
,
Ferguson
,
D.
,
Roe
,
J.
, and
Parker
,
D.
,
2012
, “
Is Femoral Component Rotation in a TKA Reliably Guided by the Functional Flexion Axis?
,”
Clin. Orthop. Relat. Res.
,
470
(
11
), pp.
3227
3232
.10.1007/s11999-012-2515-0
33.
Renault
,
J. B.
,
Aullo-Rasser
,
G.
,
Donnez
,
M.
,
Parratte
,
S.
, and
Chabrand
,
P.
,
2018
, “
Articular-Surface-Based Automatic Anatomical Coordinate Systems for the Knee Bones
,”
J. Biomech.
,
80
, pp.
171
178
.10.1016/j.jbiomech.2018.08.028
34.
Hill
,
P. F.
,
Vedi
,
V.
,
Williams
,
A.
,
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
,
2000
, “
Tibiofemoral Movement 2: The Loaded and Unloaded Living Knee Studied by MRI
,”
J. Bone Jt. Surg. Br.
,
82-B
(
8
), pp.
1196
1198
.10.1302/0301-620X.82B8.0821196
35.
Jensen
,
L. K.
,
2005
, “
Knee-Straining Work Activities, Self-Reported Knee Disorders and Radiographically Determined Knee Osteoarthritis
,”
Scand. J. Work, Environ. Health
,
31
(
Suppl 2
), pp.
68
74
.https://www.sjweh.fi/article/963
36.
Johal
,
P.
,
Williams
,
A.
,
Wragg
,
P.
,
Hunt
,
D.
, and
Gedroyc
,
W.
,
2005
, “
Tibio-Femoral Movement in the Living Knee. A Study of Weight Bearing and Non-Weight Bearing Knee Kinematics Using ‘Interventional’ MRI
,”
J. Biomech.
,
38
(
2
), pp.
269
276
.10.1016/j.jbiomech.2004.02.008
37.
Tanifuji
,
O.
,
Sato
,
T.
,
Kobayashi
,
K.
,
Mochizuki
,
T.
,
Koga
,
Y.
,
Yamagiwa
,
H.
,
Omori
,
G.
, et al.,
2011
, “
Three-Dimensional In Vivo Motion Analysis of Normal Knees Using Single-Plane Fluoroscopy
,”
J. Orthop. Sci.
,
16
(
6
), pp.
710
718
.10.1007/s00776-011-0149-9
38.
Freeman
,
M. A.
, and
Pinskerova
,
V.
,
2003
, “
The Movement of the Knee Studied by Magnetic Resonance Imaging
,”
Clin. Orthop. Relat. Res.
, (
410
), pp.
35
43
.10.1097/01.blo.0000063598.67412.0d
39.
Iwaki
,
H.
,
Pinskerova
,
V.
, and
Freeman
,
M. A.
,
2000
, “
Tibiofemoral Movement 1: The Shapes and Relative Movements of the Femur and Tibia in the Unloaded Cadaver Knee
,”
J. Bone Jt. Surg. Br.
,
82-B
(
8
), pp.
1189
1195
.10.1302/0301-620X.82B8.0821189
You do not currently have access to this content.