Abstract

Stretch-induced collagen uncrimping underlies the nonlinear mechanical behavior of the sclera according to what is often called the process of recruitment. We recently reported experimental measurements of sclera collagen crimp and pressure-induced uncrimping. Our studies, however, were cross-sectional, providing statistical descriptions of crimp with no information on the effects of stretch on specific collagen bundles. Data on bundle-specific uncrimping is necessary to better understand the effects of macroscale input on the collagen microscale and tissue failure. Our goal in this project was to measure bundle-specific stretch-induced collagen uncrimping of sclera. Three goat eyes were cryosectioned sagittally (30 μm). Samples of equatorial sclera were isolated, mounted to a custom uni-axial stretcher and imaged with polarized light microscopy at various levels of clamp-to-clamp stretch until failure. At each stretch level, local strain was measured using image tracking techniques. The level of collagen crimping was determined from the bundle waviness, defined as the circular standard deviation of fiber orientation along a bundle. Eye-specific recruitment curves were then computed using eye-specific waviness at maximum stretch before sample failure to define fibers as recruited. Nonlinear mixed effect models were used to determine the associations of waviness to local strain and recruitment to clamp-to-clamp stretch. Waviness decreased exponentially with local strain (p < 0.001), whereas bundle recruitment followed a sigmoidal curve with clamp-to-clamp stretch (p < 0.001). Individual bundle responses to stretch varied substantially, but recruitment curves were similar across sections and eyes. In conclusion, uni-axial stretch caused measurable bundle-specific uncrimping, with the sigmoidal recruitment pattern characteristic of fiber-reinforced soft tissues.

References

1.
Fratzl
,
P.
,
2008
,
Collagen: Structure and Mechanics
,
Springer Science & Business Media
,
Boston, MA
.
2.
Holzapfel
,
G. A.
,
2001
,
Handbook of Materials Behavior Models
,
Academic Press
,
Boston, MA
.
3.
Grytz
,
R.
, and
Meschke
,
G.
,
2009
, “
Constitutive Modeling of Crimped Collagen Fibrils in Soft Tissues
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
5
), pp.
522
533
.10.1016/j.jmbbm.2008.12.009
4.
Boote
,
C.
,
Sigal
,
I. A.
,
Grytz
,
R.
,
Hua
,
Y.
,
Nguyen
,
T. D.
, and
Girard
,
M. J.
,
2020
, “
Scleral Structure and Biomechanics
,”
Prog. Retinal Eye Res.
,
74
, p.
100773
.10.1016/j.preteyeres.2019.100773
5.
Huang
,
W.
,
Fan
,
Q.
,
Wang
,
W.
,
Zhou
,
M.
,
Laties
,
A. M.
, and
Zhang
,
X.
,
2013
, “
Collagen: A Potential Factor Involved in the Pathogenesis of Glaucoma
,”
Med. Sci. Monitor Basic Res.
,
19
, pp.
237
240
.10.12659/MSMBR.889061
6.
Bailey
,
A. J.
,
1987
, “
Structure, Function and Ageing of the Collagens of the Eye
,”
Eye
,
1
(
2
), pp.
175
183
.10.1038/eye.1987.34
7.
Rada
,
J. A. S.
,
Shelton
,
S.
, and
Norton
,
T. T.
,
2006
, “
The Sclera and Myopia
,”
Exp. Eye Res.
,
82
(
2
), pp.
185
200
.10.1016/j.exer.2005.08.009
8.
McBrien
,
N. A.
,
Jobling
,
A. I.
, and
Gentle
,
A.
,
2009
, “
Biomechanics of the Sclera in Myopia: Extracellular and Cellular Factors
,”
Optometry Vision Sci.
,
86
(
1
), pp.
E23
E30
.10.1097/OPX.0b013e3181940669
9.
Campbell
,
I. C.
,
Coudrillier
,
B.
, and
Ross Ethier
,
C.
,
2014
, “
Biomechanics of the Posterior Eye: A Critical Role in Health and Disease
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021005
.10.1115/1.4026286
10.
Gogola
,
A.
,
Jan
,
N.-J.
,
Brazile
,
B.
,
Lam
,
P.
,
Lathrop
,
K. L.
,
Chan
,
K. C.
, and
Sigal
,
I. A.
,
2018
, “
Spatial Patterns and Age-Related Changes of the Collagen Crimp in the Human Cornea and Sclera
,”
Invest. Ophthalmol. Visual Sci.
,
59
(
7
), pp.
2987
2998
.10.1167/iovs.17-23474
11.
Coudrillier
,
B.
,
Pijanka
,
J.
,
Jefferys
,
J.
,
Sorensen
,
T.
,
Quigley
,
H. A.
,
Boote
,
C.
, and
Nguyen
,
T. D.
,
2015
, “
Collagen Structure and Mechanical Properties of the Human Sclera: Analysis for the Effects of Age
,”
ASME J. Biomech. Eng.
,
137
(
4
), p.
041006
.10.1115/1.4029430
12.
Albon
,
J.
,
Karwatowski
,
W. S.
,
Easty
,
D. L.
,
Sims
,
T. J.
, and
Duance
,
V. C.
,
2000
, “
Age Related Changes in the Non-Collagenous Components of the Extracellular Matrix of the Human Lamina Cribrosa
,”
Br. J. Ophthalmol.
,
84
(
3
), pp.
311
317
.10.1136/bjo.84.3.311
13.
Ho
,
L. C.
,
Sigal
,
I. A.
,
Jan
,
N.-J.
,
Squires
,
A.
,
Tse
,
Z.
,
Wu
,
E. X.
,
Kim
,
S.-G.
, et al.,
2014
, “
Magic Angle–Enhanced MRI of Fibrous Microstructures in Sclera and Cornea With and Without Intraocular Pressure Loading
,”
Invest. Ophthalmol. Visual Sci.
,
55
(
9
), pp.
5662
5672
.10.1167/iovs.14-14561
14.
Newton
,
R. H.
,
Brown
,
J. Y.
, and
Meek
,
K.
,
1996
, “
Polarized Light Microscopy Technique for Quantitatively Mapping Collagen Fibril Orientation in Cornea
,”
Proceedings of BiOS Europe '96, International Society for Optics and Photonics
,
Vienna, Austria
, Dec. 6, pp.
278
284
.10.1117/12.260805
15.
Andreo
,
R.
, and
Farrell
,
R.
,
1982
, “
Corneal Small-Angle Light-Scattering Theory: Wavy Fibril Models
,”
J. Opt. Soc. Am.
,
72
(
11
), pp.
1479
1492
.10.1364/JOSA.72.001479
16.
Jan
,
N.-J.
, and
Sigal
,
I. A.
,
2018
, “
Collagen Fiber Recruitment: A Microstructural Basis for the Nonlinear Response of the Posterior Pole of the Eye to Increases in Intraocular Pressure
,”
Acta Biomater.
,
72
, pp.
295
305
.10.1016/j.actbio.2018.03.026
17.
Jan
,
N.-J.
,
Gomez
,
C.
,
Moed
,
S.
,
Voorhees
,
A. P.
,
Schuman
,
J. S.
,
Bilonick
,
R. A.
, and
Sigal
,
I. A.
,
2017
, “
Microstructural Crimp of the Lamina Cribrosa and Peripapillary Sclera Collagen Fibers
,”
Invest. Ophthalmol. Visual Sci.
,
58
(
9
), pp.
3378
3388
.10.1167/iovs.17-21811
18.
Franchi
,
M.
,
Fini
,
M.
,
Quaranta
,
M.
,
De Pasquale
,
V.
,
Raspanti
,
M.
,
Giavaresi
,
G.
,
Ottani
,
V.
, et al.,
2007
, “
Crimp Morphology in Relaxed and Stretched Rat Achilles Tendon
,”
J. Anat.
,
210
(
1
), pp.
1
7
.10.1111/j.1469-7580.2006.00666.x
19.
Komatsu
,
K.
,
Mosekilde
,
L.
,
Viidik
,
A.
, and
Chiba
,
M.
,
2002
, “
Polarized Light Microscopic Analyses of Collagen Fibers in the Rat Incisor Periodontal Ligament in Relation to Areas, Regions, and Ages
,”
Anat. Rec.
,
268
(
4
), pp.
381
387
.10.1002/ar.10179
20.
Yang
,
B.
,
Lee
,
P. Y.
,
Hua
,
Y.
,
Brazile
,
B.
,
Waxman
,
S.
,
Ji
,
F.
,
Zhu
,
Z.
, et al.,
2021
, “
Instant Polarized Light Microscopy for Imaging Collagen Microarchitecture and Dynamics
,”
J. Biophotonics
,
14
(
2
), p.
e202000326
.10.1002/jbio.202000326
21.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2006
,
Mechanics of Biological Tissue
,
Springer Berlin
,
Heidelberg, Germany
.
22.
Ethier
,
C. R.
, and
Simmons
,
C. A.
,
2007
,
Introductory Biomechanics: From Cells to Organisms
,
Cambridge University Press
,
Cambridge, UK
.
23.
Diamant
,
J.
,
Keller
,
A.
,
Baer
,
E.
,
Litt
,
M.
, and
Arridge
,
R.
,
1972
, “
Collagen; Ultrastructure and Its Relation to Mechanical Properties as a Function of Ageing
,”
Proc. R. Soc. London. Ser. B
,
180
(
1060
), pp.
293
315
.10.1098/rspb.1972.0019
24.
Hansen
,
K. A.
,
Weiss
,
J. A.
, and
Barton
,
J. K.
,
2002
, “
Recruitment of Tendon Crimp With Applied Tensile Strain
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
72
77
.10.1115/1.1427698
25.
Thornton
,
G. M.
,
Shrive
,
N. G.
, and
Frank
,
C. B.
,
2002
, “
Ligament Creep Recruits Fibres at Low Stresses and Can Lead to Modulus-Reducing Fibre Damage at Higher Creep Stresses: A Study in Rabbit Medial Collateral Ligament Model
,”
J. Orthop. Res.
,
20
(
5
), pp.
967
974
.10.1016/S0736-0266(02)00028-1
26.
Hill
,
M. R.
,
Duan
,
X.
,
Gibson
,
G. A.
,
Watkins
,
S.
, and
Robertson
,
A. M.
,
2012
, “
A Theoretical and Non-Destructive Experimental Approach for Direct Inclusion of Measured Collagen Orientation and Recruitment Into Mechanical Models of the Artery Wall
,”
J. Biomech.
,
45
(
5
), pp.
762
771
.10.1016/j.jbiomech.2011.11.016
27.
Winkler
,
M.
,
Chai
,
D.
,
Kriling
,
S.
,
Nien
,
C. J.
,
Brown
,
D. J.
,
Jester
,
B.
,
Juhasz
,
T.
, et al.,
2011
, “
Nonlinear Optical Macroscopic Assessment of 3-D Corneal Collagen Organization and Axial Biomechanics
,”
Invest. Ophthalmol. Visual Sci.
,
52
(
12
), pp.
8818
8827
.10.1167/iovs.11-8070
28.
Liu
,
X.
,
Wang
,
L.
,
Ji
,
J.
,
Yao
,
W.
,
Wei
,
W.
,
Fan
,
J.
,
Joshi
,
S.
, et al.,
2014
, “
A Mechanical Model of the Cornea Considering the Crimping Morphology of Collagen Fibrils
,”
Invest. Ophthalmol. Visual Sci.
,
55
(
4
), pp.
2739
2746
.10.1167/iovs.13-12633
29.
Grytz
,
R.
, and
Meschke
,
G.
,
2010
, “
A Computational Remodeling Approach to Predict the Physiological Architecture of the Collagen Fibril Network in Corneo-Scleral Shells
,”
Biomech. Model. Mechanobiol.
,
9
(
2
), pp.
225
235
.10.1007/s10237-009-0173-2
30.
Grytz
,
R.
,
Meschke
,
G.
, and
Jonas
,
J. B.
,
2011
, “
The Collagen Fibril Architecture in the Lamina Cribrosa and Peripapillary Sclera Predicted by a Computational Remodeling Approach
,”
Biomech. Model. Mechanobiol.
,
10
(
3
), pp.
371
382
.10.1007/s10237-010-0240-8
31.
Fazio
,
M. A.
,
Grytz
,
R.
,
Morris
,
J. S.
,
Bruno
,
L.
,
Gardiner
,
S. K.
,
Girkin
,
C. A.
, and
Downs
,
J. C.
,
2014
, “
Age-Related Changes in Human Peripapillary Scleral Strain
,”
Biomech. Model. Mechanobiol.
,
13
(
3
), pp.
551
563
.10.1007/s10237-013-0517-9
32.
Girard
,
M. J.
,
Suh
,
J.-K. F.
,
Bottlang
,
M.
,
Burgoyne
,
C. F.
, and
Downs
,
J. C.
,
2009
, “
Scleral Biomechanics in the Aging Monkey Eye
,”
Invest. Ophthalmol. Visual Sci.
,
50
(
11
), pp.
5226
5237
.10.1167/iovs.08-3363
33.
Jan
,
N.-J.
,
Brazile
,
B. L.
,
Hu
,
D.
,
Grube
,
G.
,
Wallace
,
J.
,
Gogola
,
A.
, and
Sigal
,
I. A.
,
2018
, “
Crimp Around the Globe; Patterns of Collagen Crimp Across the Corneoscleral Shell
,”
Exp. Eye Res.
,
172
, pp.
159
170
.10.1016/j.exer.2018.04.003
34.
Lee
,
P.-Y.
,
Yang
,
B.
,
Hua
,
Y.
,
Waxman
,
S.
,
Zhu
,
Z.
,
Ji
,
F.
, and
Sigal
,
I. A.
,
2022
, “
Real-Time Imaging of Optic Nerve Head Collagen Microstructure and Biomechanics Using Instant Polarized Light Microscopy
,”
Exp. Eye Res.
,
217
, p.
108967
.10.1016/j.exer.2022.108967
35.
Gogola
,
A.
,
Jan
,
N.-J.
,
Lathrop
,
K. L.
, and
Sigal
,
I. A.
,
2018
, “
Radial and Circumferential Collagen Fibers Are a Feature of the Peripapillary Sclera of Human, Monkey, Pig, Cow, Goat, and Sheep
,”
Invest. Ophthalmol. Visual Sci.
,
59
(
12
), pp.
4763
4774
.10.1167/iovs.18-25025
36.
Handsfield
,
G. G.
,
Slane
,
L. C.
, and
Screen
,
H. R.
,
2016
, “
Nomenclature of the Tendon Hierarchy: An Overview of Inconsistent Terminology and a Proposed Size-Based Naming Scheme With Terminology for Multi-Muscle Tendons
,”
J. Biomech.
,
49
(
13
), pp.
3122
3124
.10.1016/j.jbiomech.2016.06.028
37.
Jan
,
N.-J.
,
Grimm
,
J. L.
,
Tran
,
H.
,
Lathrop
,
K. L.
,
Wollstein
,
G.
,
Bilonick
,
R. A.
,
Ishikawa
,
H.
, et al.,
2015
, “
Polarization Microscopy for Characterizing Fiber Orientation of Ocular Tissues
,”
Biomed. Optics Express
,
6
(
12
), pp.
4705
4718
.10.1364/BOE.6.004705
38.
Jan
,
N.-J.
,
Lathrop
,
K.
, and
Sigal
,
I. A.
,
2017
, “
Collagen Architecture of the Posterior Pole: High-Resolution Wide Field of View Visualization and Analysis Using Polarized Light Microscopy
,”
Invest. Ophthalmol. Visual Sci.
,
58
(
2
), pp.
735
744
.10.1167/iovs.16-20772
39.
Shribak
,
M.
, and
Oldenbourg
,
R.
,
2003
, “
Techniques for Fast and Sensitive Measurements of Two-Dimensional Birefringence Distributions
,”
Appl. Opt.
,
42
(
16
), pp.
3009
3017
.10.1364/AO.42.003009
40.
Yang
,
B.
,
Jan
,
N. J.
,
Brazile
,
B.
,
Voorhees
,
A.
,
Lathrop
,
K. L.
, and
Sigal
,
I. A.
,
2018
, “
Polarized Light Microscopy for 3‐Dimensional Mapping of Collagen Fiber Architecture in Ocular Tissues
,”
J. Biophotonics
,
11
(
8
), p.
e201700356
.10.1002/jbio.201700356
41.
Jammalamadaka
,
S. R.
, and
Sengupta
,
A.
,
2001
,
Topics in Circular Statistics
,
World Scientific Publishing Co
.,
Singapore
.
42.
Sigal
,
I. A.
,
Grimm
,
J. L.
,
Jan
,
N. J.
,
Reid
,
K.
,
Minckler
,
D. S.
, and
Brown
,
D. J.
,
2014
, “
Eye-Specific IOP-Induced Displacements and Deformations of Human Lamina Cribrosa
,”
Invest. Ophthalmol. Vis Sci.
,
55
(
1
), pp.
1
15
.10.1167/iovs.13-12724
43.
Team
,
R. C.
,
2022
, “
R: A Language and Environment for Statistical Computing
,” R Foundation for Statistical Computing, Vienna, Austria, accessed Aug. 31, 2022, https://www.R-project.org
44.
Gałecki
,
A.
, and
Burzykowski
,
T.
,
2013
, “
Linear Mixed-Effects Model
,”
Linear Mixed-Effects Models Using R
,
Springer
, New York, pp.
245
273
.
45.
York
,
T.
,
Kahan
,
L.
,
Lake
,
S. P.
, and
Gruev
,
V.
,
2014
, “
Real-Time High-Resolution Measurement of Collagen Alignment in Dynamically Loaded Soft Tissue
,”
J. Biomed. Optics
,
19
(
06
), p.
1
.10.1117/1.JBO.19.6.066011
46.
Chakraborty
,
N.
,
Wang
,
M.
,
Solocinski
,
J.
,
Kim
,
W.
, and
Argento
,
A.
,
2016
, “
Imaging of Scleral Collagen Deformation Using Combined Confocal Raman Microspectroscopy and Polarized Light Microscopy Techniques
,”
PLoS One
,
11
(
11
), p.
e0165520
.10.1371/journal.pone.0165520
47.
Argento
,
A.
,
Kim
,
W.
,
Rozsa
,
F. W.
,
DeBolt
,
K. L.
,
Zikanova
,
S.
, and
Richards
,
J. R.
,
2014
, “
Shear Behavior of Bovine Scleral Tissue
,”
ASME J. Biomech. Eng.
,
136
(
7
), p.
071011
.10.1115/1.4027615
48.
Hatami-Marbini
,
H.
, and
Pachenari
,
M.
,
2020
, “
Hydration Related Changes in Tensile Response of Posterior Porcine Sclera
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103562
.10.1016/j.jmbbm.2019.103562
49.
Hatami-Marbini
,
H.
, and
Pachenari
,
M.
,
2021
, “
Tensile Viscoelastic Properties of the Sclera After Glycosaminoglycan Depletion
,”
Curr. Eye Res.
,
46
(
9
), pp.
1299
1308
.10.1080/02713683.2021.1874026
50.
Hatami-Marbini
,
H.
, and
Mehr
,
J. A.
,
2022
, “
Modeling and Experimental Investigation of Electromechanical Properties of Scleral Tissue; A CEM Model Using an Anisotropic Hyperelastic Constitutive Relation
,”
Biomech. Model. Mechanobiol.
,
21
(
5
), pp.
1325
1337
.10.1007/s10237-022-01590-5
51.
Birch
,
H. L.
,
Thorpe
,
C. T.
, and
Rumian
,
A. P.
,
2019
, “
Specialisation of Extracellular Matrix for Function in Tendons and Ligaments
,”
Muscles Ligaments Tendons J.
,
3
(
1
), pp.
12
22
.10.32098/mltj.01.2013.04
52.
Ethier
,
C. R.
,
Johnson
,
M.
, and
Ruberti
,
J.
,
2004
, “
Ocular Biomechanics and Biotransport
,”
Annu. Rev. Biomed. Eng.
,
6
(
1
), pp.
249
273
.10.1146/annurev.bioeng.6.040803.140055
53.
Rada
,
J. A.
,
Achen
,
V. R.
,
Penugonda
,
S.
,
Schmidt
,
R. W.
, and
Mount
,
B. A.
,
2000
, “
Proteoglycan Composition in the Human Sclera During Growth and Aging
,”
Invest. Ophthalmol. Visual Sci.
,
41
(
7
), pp.
1639
1648
.https://iovs.arvojournals.org/article.aspx?articleid=2123517
54.
Gelman
,
S.
,
Cone
,
F. E.
,
Pease
,
M. E.
,
Nguyen
,
T. D.
,
Myers
,
K.
, and
Quigley
,
H. A.
,
2010
, “
The Presence and Distribution of Elastin in the Posterior and Retrobulbar Regions of the Mouse Eye
,”
Exp. Eye Res.
,
90
(
2
), pp.
210
215
.10.1016/j.exer.2009.10.007
55.
Voorhees
,
A. P.
,
Jan
,
N.-J.
,
Hua
,
Y.
,
Yang
,
B.
, and
Sigal
,
I. A.
,
2018
, “
Peripapillary Sclera Architecture Revisited: A Tangential Fiber Model and Its Biomechanical Implications
,”
Acta Biomater.
,
79
, pp.
113
122
.10.1016/j.actbio.2018.08.020
56.
Baumann
,
B.
,
Rauscher
,
S.
,
Glösmann
,
M.
,
Götzinger
,
E.
,
Pircher
,
M.
,
Fialová
,
S.
,
Gröger
,
M.
, et al.,
2014
, “
Peripapillary Rat Sclera Investigated In Vivo With Polarization-Sensitive Optical Coherence Tomography
,”
Invest. Ophthalmol. Visual Sci.
,
55
(
11
), pp.
7686
7696
.10.1167/iovs.14-15037
57.
Ho
,
L. C.
,
Sigal
,
I. A.
,
Jan
,
N.-J.
, Yang, X., van der Merwe, Y., Yu, Y., Chau, Y., et al., 2016, “
Non-Invasive MRI Assessments of Tissue Microstructures and Macromolecules in the Eye Upon Biomechanical or Biochemical Modulation
,”
Sci. Rep.
, 6, p. 32080
.10.1038/srep32080
58.
Coudrillier
,
B.
,
Geraldes
,
D. M.
,
Vo
,
N. T.
,
Atwood
,
R.
,
Reinhard
,
C.
,
Campbell
,
I. C.
,
Raji
,
Y.
, et al.,
2016
, “
Phase-Contrast Micro-Computed Tomography Measurements of the Intraocular Pressure-Induced Deformation of the Porcine Lamina Cribrosa
,”
IEEE Trans. Med. Imaging
,
35
(
4
), pp.
988
999
.10.1109/TMI.2015.2504440
59.
Ribeiro
,
A. P.
,
Santos
,
N. L.
,
Silva
,
V. C. E.
,
Campos
,
A. F.
,
Teixeira
,
I. A. M. D A.
, and
Laus
,
J. L.
,
2010
, “
Ultrasonographic and Ecobiometric Findings in the Eyes of Adult Goats
,”
Ciência Rural
,
40
(
3
), pp.
568
573
.10.1590/S0103-84782010005000019
60.
Al-Redah
,
S. A. A.
,
2016
, “
Ultrasonographic Anatomy of the Goat Eye
,”
Al-Qadisiyah J. Vet. Med. Sci.
,
15
(
1
), pp.
160
164
.10.29079/vol15iss1art384
61.
Chen
,
Y.
,
Wu
,
W.
,
Zhang
,
X.
,
Fan
,
W.
, and
Shen
,
L.
,
2011
, “
Feasibility Study on Retinal Vascular Bypass Surgery in Isolated Arterially Perfused Caprine Eye Model
,”
Eye
,
25
(
11
), pp.
1499
1503
.10.1038/eye.2011.197
62.
Yang
,
B.
,
Jan
,
N.-J.
,
Lam
,
P.
,
Lathrop
,
K. L.
, and
Sigal
,
I. A.
,
2017
, “
Collagen Architecture in the Third Dimension: 3D Polarized Light Microscopy (3DPLM) for Mapping in-Plane (IP) and Out-of-Plane (OOP) Collagen Fiber Architecture
,”
Invest. Ophthalmol. Visual Sci.
,
58
(
8
), pp.
4825
4825
.https://iovs.arvojournals.org/article.aspx?articleid=2638185
63.
Yang
,
B.
,
Brazile
,
B.
,
Jan
,
N.-J.
,
Hua
,
Y.
,
Wei
,
J.
, and
Sigal
,
I. A.
,
2018
, “
Structured Polarized Light Microscopy for Collagen Fiber Structure and Orientation Quantification in Thick Ocular Tissues
,”
J. Biomed. Optics
,
23
(
10
), p.
1
.10.1117/1.JBO.23.10.106001
64.
Ji
,
F.
,
Quinn
,
M.
,
Bansal
,
M.
,
Hua
,
Y.
, and
Sigal
,
I. A.
,
2022
, “
Corneo-Sclera Collagen Fibers Exhibit Substantial Transverse Inclination
,”
Invest. Ophthalmol. Visual Sci.
,
63
(
7
), pp.
2719-A0083
2719-A0083
.https://iovs.arvojournals.org/article.aspx?articleid=2782497
You do not currently have access to this content.