Abstract

Radiostereometric analysis can be used for computing movement of a tibial baseplate relative to the tibia (termed migration) to determine stability of fixation. Quantifying migration in six degrees of freedom requires establishing a coordinate system in which to express the movement. Establishing consistent migration directions among patients and baseplate designs remains challenging. Deviations in imaging alignment (tibia/baseplate alignment during image acquisition) and surgical alignment (baseplate alignment on tibia) will affect computed migrations when using the conventional globally-aligned baseplate coordinate system (BCS) (defined by calibration box). Computing migration using a local BCS (defined by baseplate) may be preferrable. This paper (1) summarizes the migration equations when using a globally-aligned versus local BCS, (2) proposes a method for defining a local BCS, and (3) demonstrates differences in the two BCSs for an example patient whose baseplate has rotational deviations due to imaging or surgical alignments. Differences in migration for the two BCSs ranged from about ±0.5 mm in translations and −0.4 deg to 0.7 deg in rotations. Differences were largest for deviations in internal-external rotation and smallest for deviations in varus-valgus rotation. An example demonstrated that the globally-aligned BCS resulted in migration being quantified as subsidence instead of liftoff, thereby changing fundamental interpretations. Because migrations computed using a local BCS are independent of imaging and surgical alignments and instead characterize migration using baseplate features, a local BCS enhances consistency in migration directions among patients and baseplate designs relative to the interface in which fixation may be compromised.

References

1.
Ryd
,
L.
,
Albrektsson
,
B. J.
,
Carlsson
,
L.
,
Dansgard
,
F.
,
Herberts
,
P.
,
Lindstrand
,
A.
,
Regner
,
L.
, and
Toksvig-Larsen
,
S.
,
1995
, “
Roentgen Stereophotogrammetric Analysis as a Predictor of Mechanical Loosening of Knee Prostheses
,”
J. Bone Jt. Surg. Br.
,
77-B
(
3
), pp.
377
383
.10.1302/0301-620X.77B3.7744919
2.
Pijls
,
B. G.
,
Plevier
,
J. W. M.
, and
Nelissen
,
R.
,
2018
, “
RSA Migration of Total Knee Replacements
,”
Acta Orthop.
,
89
(
3
), pp.
320
328
.10.1080/17453674.2018.1443635
3.
Pijls
,
B. G.
,
Valstar
,
E. R.
,
Nouta
,
K. A.
,
Plevier
,
J. W.
,
Fiocco
,
M.
,
Middeldorp
,
S.
, and
Nelissen
,
R. G.
,
2012
, “
Early Migration of Tibial Components is Associated With Late Revision: A Systematic Review and Meta-Analysis of 21,000 Knee Arthroplasties
,”
Acta Orthop.
,
83
(
6
), pp.
614
624
.10.3109/17453674.2012.747052
4.
Selvik
,
G.
,
1989
, “
Roentgen Stereophotogrammetry
,”
Acta Orthop Scand
,
60
(
Suppl. 232
), pp. 1–51.10.3109/17453678909154184
5.
ISO16087:2013(E)
,
2013
,
Implants for Surgery - Roentgen Stereophotogrammetric Analysis for the Assessment of Migration of Orthopaedic Implants
,
International Organization for Standardization
,
Switzerland
.
6.
Laende
,
E. K.
,
Deluzio
,
K. J.
,
Hennigar
,
A. W.
, and
Dunbar
,
M. J.
,
2009
, “
Implementation and Validation of an Implant-Based Coordinate System for RSA Migration Calculation
,”
J. Biomech.
,
42
(
14
), pp.
2387
2393
.10.1016/j.jbiomech.2009.06.035
7.
Niesen
,
A. E.
,
Garverick
,
A. L.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2020
, “
Reorienting the Tibial Baseplate Improves the Registration Accuracy of Model-Based Radiostereometric Analysis
,”
J. Biomech.
,
113
, p.
110078
.10.1016/j.jbiomech.2020.110078
8.
Lee
,
Y. S.
,
Howell
,
S. M.
,
Won
,
Y. Y.
,
Lee
,
O. S.
,
Lee
,
S. H.
,
Vahedi
,
H.
, and
Teo
,
S. H.
,
2017
, “
Kinematic Alignment is a Possible Alternative to Mechanical Alignment in Total Knee Arthroplasty
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
25
(
11
), pp.
3467
3479
.10.1007/s00167-017-4558-y
9.
Niesen
,
A. E.
,
Garverick
,
A. L.
,
Howell
,
S. M.
, and
Hull
,
M. L.
,
2022
, “
Low Tibial Baseplate Migration 1 Year After Unrestricted Kinematically Aligned Total Knee Arthroplasty Using a Medial Conforming Implant Design
,”
Knee Surg. Sports Traumatol. Arthrosc.
, epub.10.1007/s00167-022-07171-4
10.
Nunley
,
R. M.
,
Nam
,
D.
,
Johnson
,
S. R.
, and
Barnes
,
C. L.
,
2014
, “
Extreme Variability in Posterior Slope of the Proximal Tibia: Measurements on 2395 CT Scans of Patients Undergoing UKA?
,”
J. Arthroplasty
,
29
(
8
), pp.
1677
1680
.10.1016/j.arth.2014.03.024
11.
Leiden University Medical Center Department of Orthopaedics,
Relative Movement Between Objects
,
Leiden University Medical Center Department of Orthopaedics
, Leiden, The Netherlands, pp.
1
8
.
12.
Soderkvist
,
I.
, and
Wedin
,
P.
,
1993
, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
,
26
(
12
), pp.
1473
1477
.10.1016/0021-9290(93)90098-Y
13.
Arun
,
K.
,
Huang
,
T.
, and
Blostein
,
S.
,
1987
, “
Least-Squares Fitting of Two 3-D Point Sets
,”
IEEE Trans. Patt. Anal. Mach. Intell.
,
PAMI-9
(
5
), pp.
698
700
.10.1109/TPAMI.1987.4767965
14.
Jazar
,
R. N.
,
2007
,
Theory of Applied Robotics: Kinematics, Dynamics, and Control
,
Springer
,
New York
.
15.
Calek
,
A. K.
,
Hochreiter
,
B.
,
Hess
,
S.
,
Amsler
,
F.
,
Leclerq
,
V.
,
Hirschmann
,
M. T.
, and
Behrend
,
H.
,
2022
, “
High Inter- and Intraindividual Differences in Medial and Lateral Posterior Tibial Slope Are Not Reproduced Accurately by Conventional TKA Alignment Techniques
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
30
(
3
), pp.
882
889
.10.1007/s00167-021-06477-z
16.
Siston
,
R. A.
,
Goodman
,
S. B.
,
Patel
,
J. J.
,
Delp
,
S. L.
, and
Giori
,
N. J.
,
2006
, “
The High Variability of Tibial Rotational Alignment in Total Knee Arthroplasty
,”
Clin. Orthop. Relat. Res.
,
452
, pp.
65
69
.10.1097/01.blo.0000229335.36900.a0
17.
Valstar
,
E. R.
,
Gill
,
R.
,
Ryd
,
L.
,
Flivik
,
G.
,
Borlin
,
N.
, and
Karrholm
,
J.
,
2005
, “
Guidelines for Standardization of Radiostereometry (RSA) of Implants
,”
Acta Orthop.
,
76
(
4
), pp.
563
572
.10.1080/17453670510041574
18.
van Hamersveld
,
K. T.
,
Marang-van de Mheen
,
P. J.
,
Koster
,
L. A.
,
Nelissen
,
R.
,
Toksvig-Larsen
,
S.
, and
Kaptein
,
B. L.
,
2019
, “
Marker-Based Versus Model-Based Radiostereometric Analysis of Total Knee Arthroplasty Migration: A Reanalysis With Comparable Mean Outcomes Despite Distinct Types of Measurement Error
,”
Acta Orthop.
,
90
(
4
), pp.
366
372
.10.1080/17453674.2019.1605692
19.
van Hamersveld
,
K. T.
,
Marang-van de Mheen
,
P. J.
,
Tsonaka
,
R.
,
Nilsson
,
K. G.
,
Toksvig-Larsen
,
S.
, and
Nelissen
,
R.
,
2021
, “
Risk Factors for Tibial Component Loosening: A Meta-Analysis of Long-Term Follow-up Radiostereometric Analysis Data
,”
J. Bone Jt. Surg. Am.
,
103
(
12
), pp.
1115
1124
.10.2106/JBJS.20.01454
20.
van Embden
,
D.
,
Stollenwerck
,
G. A. N. L.
,
Koster
,
L. A.
,
Kaptein
,
B.
,
Nelissen
,
R. G.
, and
Schipper
,
I. B.
,
2015
, “
The Stability of Fixation of Proximal Femoral Fractures
,”
Bone Jt. J.
,
97-B
, pp.
391
397
.10.1302/0301-620X.97B3.35077
21.
Gudnason
,
A.
,
Adalberth
,
G.
,
Nilsson
,
K. G.
, and
Hailer
,
N. P.
,
2017
, “
Tibial Component Rotation Around the Transverse Axis Measured by Radiostereometry Predicts Aseptic Loosening Better Than Maximal Total Point Motion
,”
Acta Orthop.
,
88
(
3
), pp.
282
287
.10.1080/17453674.2017.1297001
22.
Nedopil
,
A. J.
,
Zamora
,
T.
,
Shelton
,
T.
,
Howell
,
S. M.
, and
Hull
,
M.
,
2021
, “
A Best-Fit of an Anatomic Tibial Baseplate Closely Parallels the Flexion-Extension Plane and Covers a High Percentage of the Proximal Tibia
,”
J. Knee Surg.
,
34
(
13
), pp.
1486
1494
.10.1055/s-0040-1710367
23.
Laende, E. K., Richardson, C. G., and Dunbar, M. J., 2019, “A Randomized Controlled Trial of Tibial Component Migration With Kinematic Alignment Using Patient-Specific Instrumentation Versus Mechanical Alignment Using Computer-Assisted Surgery in Total Knee Arthroplasty,”
Bone Joint J.
, 101–B(8), pp. 929–940.10.1302/0301-620X.101B8.BJJ-2018-0755.R3
You do not currently have access to this content.