Abstract

Knowledge of the failure properties of the aorta is essential to understand the mechanisms of dissection and rupture. Limited information is, however, available in humans or experimental animals about the layer-specific properties and their segmental variations have not been determined. In this paper, the failure properties of the intima, media, and adventitia were studied in nine consecutive aortic segments and two principal directions. Detailed biomechanical tests were performed with a tensile-testing device on 756 layer strips, harvested from fourteen cadaveric subjects aged 21–82 years. Intimal and medial strength in either direction remained invariant along the aorta, and their extensibility longitudinally decreased, whereas adventitial strength and extensibility longitudinally increased, explaining why the preferential sites for the development of aortic dissection or traumatic rupture are in the proximal aorta. The media was stronger circumferentially than longitudinally in all segments, accounting for the typically transverse tearing in dissection/rupture. The adventitial properties were significantly higher than the intimal and medial in most segments. Still, the intima had similar strength but lower extensibility compared to the media in both directions, and higher maximum stiffness longitudinally in several segments. The rupture surface of all layers was not perpendicular to the loading axis, more so in the circumferential strips compared to longitudinal ones. Aging impaired the extensibility and strength of all layers, particularly the media, but did not affect the maximum stiffness and rupture-surface direction. Females were rarely associated with different failure properties compared to age-matched males.

References

1.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
, 1st ed.,
Springer-Verlag
,
New York
.
2.
Guo
,
X.
, and
Kassab
,
G. S.
,
2003
, “
Variation of Mechanical Properties Along the Length of the Aorta in C57bl/6 Mice
,”
Am. J. Physiol. Heart Circ. Physiol.
,
285
(
6
), pp.
H2614
H2622
.10.1152/ajpheart.00567.2003
3.
Sokolis
,
D. P.
,
2007
, “
Passive Mechanical Properties and Structure of the Aorta: Segmental Analysis
,”
Acta Physiol. (Oxford)
,
190
(
4
), pp.
277
289
.10.1111/j.1748-1716.2006.01661.x
4.
Shah
,
C. S.
,
Hardy
,
W. N.
,
Mason
,
M. J.
,
Yang
,
K. H.
,
Van Ee
,
C. A.
,
Morgan
,
R.
, and
Digges
,
K.
,
2006
, “
Dynamic Biaxial Tissue Properties of the Human Cadaver Aorta
,”
Stapp Car Crash J.
,
50
, pp.
217
246
.10.4271/2006-22-0010
5.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
6.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
7.
Anagnostopoulos
,
C. E.
,
1975
,
Acute Aortic Dissections
,
University Park Press
,
Baltimore, MD
.
8.
Greendyke
,
R. M.
,
1966
, “
Traumatic Rupture of Aorta; Special Reference to Automobile Accidents
,”
JAMA
,
195
(
7
), pp.
527
530
.10.1001/jama.1966.03100070071021
9.
Deveja
,
R. P.
,
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Angouras
,
D. C.
,
Sfyris
,
D.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2018
, “
Effect of Aneurysm and Bicuspid Aortic Valve on Layer-Specific Ascending Aorta Mechanics
,”
Ann. Thorac. Surg.
,
106
(
6
), pp.
1692
1701
.10.1016/j.athoracsur.2018.05.071
10.
Amabili
,
M.
,
Balasubramanian
,
P.
,
Bozzo
,
I.
,
Breslavsky
,
I. D.
, and
Ferrari
,
G.
,
2019
, “
Layer-Specific Hyperelastic and Viscoelastic Characterization of Human Descending Thoracic Aortas
,”
J. Mech. Behav. Biomed. Mater.
,
99
, pp.
27
46
.10.1016/j.jmbbm.2019.07.008
11.
Sherifova
,
S.
,
Sommer
,
G.
,
Viertler
,
C.
,
Regitnig
,
P.
,
Caranasos
,
T.
,
Smith
,
M. A.
,
Griffith
,
B. E.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2019
, “
Failure Properties and Microstructure of Healthy and Aneurysmatic Human Thoracic Aortas Subjected to Uniaxial Extension With a Focus on the Media
,”
Acta Biomater.
,
99
, pp.
443
456
.10.1016/j.actbio.2019.08.038
12.
Sokolis
,
D. P.
,
Gouskou
,
N.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2021
, “
Layer-Specific Residual Deformations and Their Variation Along the Human Aorta
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
094504
.10.1115/1.4050913
13.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
, and
Iliopoulos
,
D. C.
,
2012
, “
Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1227
1237
.10.1007/s11517-012-0949-x
14.
Sassani
,
S. G.
,
Kakisis
,
J.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer-Dependent Wall Properties of Abdominal Aortic Aneurysms: Experimental Study and Material Characterization
,”
J. Mech. Behav. Biomed. Mater.
,
49
, pp.
141
161
.10.1016/j.jmbbm.2015.04.027
15.
Cohen
,
J.
,
Litwin
,
S. B.
,
Aaron
,
A.
, and
Fine
,
S.
,
1972
, “
The Rupture Force and Tensile Strength of Canine Aortic Tissue
,”
J. Surg. Res.
,
13
(
6
), pp.
321
333
.10.1016/0022-4804(72)90083-2
16.
Purslow
,
P. P.
,
1983
, “
Positional Variations in Fracture Toughness, Stiffness and Strength of Descending Thoracic Pig Aorta
,”
J. Biomech.
,
16
(
11
), pp.
947
953
.10.1016/0021-9290(83)90058-1
17.
Lundevall
,
J.
,
1964
, “
The Mechanism of Traumatic Rupture of the Aorta
,”
Acta Pathol. Microbiol. Scand.
,
62
(
1
), pp.
34
46
.10.1111/apm.1964.62.1.34
18.
Peña
,
J. A.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2019
, “
Failure Damage Mechanical Properties of Thoracic and Abdominal Porcine Aorta Layers and Related Constitutive Modeling: Phenomenological and Microstructural Approach
,”
Biomech. Model. Mechanobiol.
,
18
(
6
), pp.
1709
1730
.10.1007/s10237-019-01170-0
19.
Guinea
,
G. V.
,
Atienza
,
J. M.
,
Rojo
,
F. J.
,
García-Herrera
,
C. M.
,
Yiqun
,
L.
,
Claes
,
E.
,
Goicolea
,
J. M.
,
García-Montero
,
C.
,
Burgos
,
R. L.
,
Goicolea
,
F. J.
, and
Elices
,
M.
,
2010
, “
Factors Influencing the Mechanical Behavior of Healthy Human Descending Thoracic Aorta
,”
Physiol. Meas.
,
31
(
12
), pp.
1553
1565
.10.1088/0967-3334/31/12/001
20.
Jadidi
,
M.
,
Habibnezhad
,
M.
,
Anttila
,
E.
,
Maleckis
,
K.
,
Desyatova
,
A.
,
MacTaggart
,
J.
, and
Kamenskiy
,
A.
,
2020
, “
Mechanical and Structural Changes in Human Thoracic Aortas With Age
,”
Acta Biomater.
,
103
, pp.
172
188
.10.1016/j.actbio.2019.12.024
21.
Sang
,
C.
,
Maiti
,
S.
,
Fortunato
,
R. N.
,
Kofler
,
J.
, and
Robertson
,
A. M.
,
2018
, “
A Uniaxial Testing Approach for Consistent Failure in Vascular Tissues
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061010
.10.1115/1.4039577
22.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.10.1016/j.jtcvs.2008.07.023
23.
Liu
,
M.
,
Dong
,
H.
,
Lou
,
X.
,
Iannucci
,
G.
,
Chen
,
E. P.
,
Leshnower
,
B. G.
, and
Sun
,
W.
,
2020
, “
A Novel Anisotropic Failure Criterion With Dispersed Fiber Orientations for Aortic Tissues
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
111002
.10.1115/1.4048029
24.
Tong
,
J.
,
Xu
,
X.
,
Xin
,
Y. F.
,
Zhang
,
Z.
, and
Wu
,
C. H.
,
2022
, “
Failure Properties of Healthy and Diabetic Rabbit Thoracic Aortas and Their Potential Correlation With Mass Fractions of Collagen
,”
Cardiovasc. Eng. Technol.
,
13
(
1
), pp.
69
79
.10.1007/s13239-021-00554-7
25.
Haslach
,
H. W.
, Jr.
,
Riley
,
P.
, and
Molotsky
,
A.
,
2011
, “
The Influence of Medial Substructures on Rupture in Bovine Aortas
,”
Cardiovasc. Eng. Technol.
,
2
(
4
), pp.
372
387
.10.1007/s13239-011-0056-4
26.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fiber Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1275
1286
.10.1098/rsif.2011.0727
27.
Mohan
,
D.
, and
Melvin
,
J. W.
,
1982
, “
Failure Properties of Passive Human Aortic Tissue. I – Uniaxial Tension Tests
,”
J. Biomech.
,
15
(
11
), pp.
887
902
.10.1016/0021-9290(82)90055-0
28.
Sokolis
,
D. P.
,
2015
, “
Effects of Aneurysm on the Directional, Regional, and Layer Distribution of Residual Strains in Ascending Thoracic Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
46
, pp.
229
243
.10.1016/j.jmbbm.2015.01.024
29.
Giudici
,
A.
,
Khir
,
A. W.
,
Szafron
,
J. M.
, and
Spronck
,
B.
,
2021
, “
From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2454
2467
.10.1007/s10439-021-02775-2
30.
Korenczuk
,
C. E.
,
Votava
,
L. E.
,
Dhume
,
R. Y.
,
Kizilski
,
S. B.
,
Brown
,
G. E.
,
Narain
,
R.
, and
Barocas
,
V. H.
,
2017
, “
Isotropic Failure Criteria Are Not Appropriate for Anisotropic Fibrous Biological Tissues
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
0710081
.10.1115/1.4036316
31.
Manopoulos
,
C.
,
Karathanasis
,
I.
,
Kouerinis
,
I.
,
Angouras
,
D. C.
,
Lazaris
,
A.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2018
, “
Identification of Regional/Layer Differences in Failure Properties and Thickness as Important Biomechanical Factors Responsible for the Initiation of Aortic Dissections
,”
J. Biomech.
,
80
, pp.
102
110
.10.1016/j.jbiomech.2018.08.024
You do not currently have access to this content.