Abstract

A new dissipation function Wv is devised and presented to capture the rate-dependent mechanical behavior of the semilunar heart valves. Following the experimentally-guided framework introduced in our previous work (Anssari-Benam et al., 2022 “Modelling the Rate-Dependency of the Mechanical Behaviour of the Aortic Heart Valve: An Experimentally Guided Theoretical Framework," J. Mech. Behav. Biomed. Mater., 134, p. 105341), we derive our proposed Wv function from the experimental data pertaining to the biaxial deformation of the aortic and pulmonary valve specimens across a 10,000-fold range of deformation rate, exhibiting two distinct rate-dependent features: (i) the stiffening effect in σλ curves with increase in rate; and (ii) the asymptotic effect of rate on stress levels at higher rates. The devised Wv function is then used in conjunction with a hyperelastic strain energy function We to model the rate-dependent behavior of the valves, incorporating the rate of deformation as an explicit variable. It is shown that the devised function favorably captures the observed rate-dependent features, and the model provides excellent fits to the experimentally obtained σλ curves. The proposed function is thereby recommended for application to the rate-dependent mechanical behavior of heart valves, as well as other soft tissues that exhibit a similar rate-dependent behavior.

References

1.
Grashow
,
J. S.
,
Yoganathan
,
A. P.
, and
Sacks
,
M. S.
,
2006
, “
Biaxial Stress-Stretch Behavior of the Mitral Valve Anterior Leaflet at Physiologic Strain Rates
,”
Ann. Biomed. Eng.
,
34
(
2
), pp.
315
325
.10.1007/s10439-005-9027-y
2.
Grashow
,
J. S.
,
Sacks
,
M. S.
,
Liao
,
J.
, and
Yoganathan
,
A. P.
,
2006
, “
Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1509
1518
.10.1007/s10439-006-9183-8
3.
Stella
,
J. A.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2007
, “
Time-Dependent Biaxial Mechanical Behavior of the Aortic Heart Valve Leaflet
,”
J. Biomech.
,
40
(
14
), pp.
3169
3177
.10.1016/j.jbiomech.2007.04.001
4.
Thomas
,
V. S.
,
Lai
,
V.
, and
Amini
,
R.
,
2019
, “
A Computational Multi-Scale Approach to Investigate Mechanically-Induced Changes in Tricuspid Valve Anterior Leaflet Microstructure
,”
Acta Biomater.
,
94
, pp.
524
535
.10.1016/j.actbio.2019.05.074
5.
Ross
,
C. J.
,
Laurence
,
D. W.
,
Richardson
,
J.
,
Babu
,
A. R.
,
Evans
,
L. E.
,
Beyer
,
E. G.
, et al.,
2019
, “
An Investigation of the Glycosaminoglycan Contribution to Biaxial Mechanical Behaviours of Porcine Atrioventricular Heart Valve Leaflets
,”
J. R. Soc. Interface
,
16
(
156
), p.
20190069
.10.1098/rsif.2019.0069
6.
Laurence
,
D. W.
, and
Lee
,
C.-H.
,
2021
, “
Determination of a Strain Energy Density Function for the Tricuspid Valve Leaflets Using Constant Invariant-Based Mechanical Characterizations
,”
ASME J. Biomech. Eng.
,
143
(
2
), p.
121009
.10.1115/1.4052612
7.
Anssari-Benam
,
A.
,
Tseng
,
Y.-T.
,
Holzapfel
,
G. A.
, and
Bucchi
,
A.
,
2020
, “
Rate-Dependent Mechanical Behaviour of Semilunar Valves Under Tensile Deformation: From Quasi-Static to Physiological Loading Rates
,”
J. Mech. Behav. Biomed. Mater.
,
104
, p.
103645
.10.1016/j.jmbbm.2020.103645
8.
Anssari-Benam
,
A.
,
Tseng
,
Y.-T.
,
Pani
,
M.
, and
Bucchi
,
A.
,
2022
, “
Modelling the Rate-Dependency of the Mechanical Behaviour of the Aortic Heart Valve: An Experimentally Guided Theoretical Framework
,”
J. Mech. Behav. Biomed. Mater.
,
134
, p.
105341
.10.1016/j.jmbbm.2022.105341
9.
Anssari-Benam
,
A.
,
Tseng
,
Y.-T.
,
Holzapfel
,
G. A.
, and
Bucchi
,
A.
,
2019
, “
Rate-Dependency of the Mechanical Behaviour of Semilunar Heart Valves Under Biaxial Deformation
,”
Acta Biomater.
,
88
, pp.
120
130
.10.1016/j.actbio.2019.02.008
10.
Anssari-Benam
,
A.
,
Tseng
,
Y.-T.
, and
Bucchi
,
A.
,
2018
, “
A Transverse Isotropic Constitutive Model for the Aortic Valve Tissue Incorporating Rate-Dependency and Fibre Dispersion: Application to Biaxial Deformation
,”
J. Mech. Behav. Biomed. Mater.
,
85
, pp.
80
93
.10.1016/j.jmbbm.2018.05.035
11.
Anssari-Benam
,
A.
,
Bader
,
D. L.
, and
Screen
,
H. R. C.
,
2011
, “
A Combined Experimental and Modelling Approach to Aortic Valve Viscoelasticity in Tensile Deformation
,”
J. Mater. Sci: Mater. Med.
,
22
, pp.
253
262
.10.1007/s10856-010-4210-6
12.
Anssari-Benam
,
A.
,
Bucchi
,
A.
,
Screen
,
H. R. C.
, and
Evans
,
S. L.
,
2017
, “
A Transverse Isotropic Viscoelastic Constitutive Model for Aortic Valve Tissue
,”
R. Soc. Open Sci.
,
4
(
1
), p.
160585
.10.1098/rsos.160585
13.
Sacks
,
M. S.
, and
Yoganathan
,
A. P.
,
2007
, “
Heart Valve Function: A Biomechanical Perspective
,”
Philos. Trans. R. Soc. B
,
362
(
1484
), pp.
1369
1391
.10.1098/rstb.2007.2122
14.
Pioletti
,
D. P.
,
Rakotomanana
,
L. R.
,
Benvenuti
,
J. F.
, and
Leyvraz
,
P. F.
,
1998
, “
Viscoelastic Constitutive Law in Large Deformations: Application to Human Knee Ligaments and Tendons
,”
J. Biomech.
,
31
(
8
), pp.
753
757
.10.1016/S0021-9290(98)00077-3
15.
Limbert
,
G.
, and
Middleton
,
J.
,
2004
, “
A Transversely Isotropic Viscohyperelastic Material: Application to the Modeling of Biological Soft Connective Tissues
,”
Int. J. Solids Struct.
,
41
(
15
), pp.
4237
4260
.10.1016/j.ijsolstr.2004.02.057
16.
Anssari-Benam
,
A.
,
Screen
,
H. R. C.
, and
Bucchi
,
A.
,
2019
, “
Insights Into the Micromechanics of Stress-Relaxation and Creep Behaviours in the Aortic Valve
,”
J. Mech. Behav. Biomed. Mater.
,
93
, pp.
230
245
.10.1016/j.jmbbm.2019.02.011
17.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elast.
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
18.
Anssari-Benam
,
A.
, and
Bucchi
,
A.
,
2018
, “
Modelling the Deformation of the Elastin Network in the Aortic Valve
,”
ASME J. Biomech. Eng.
,
140
(
1
), p.
011004
.10.1115/1.4037916
19.
Anssari-Benam
,
A.
, and
Bucchi
,
A.
,
2021
, “
A Generalised neo-Hookean Strain Energy Function for Application to the Finite Deformation of Elastomers
,”
Int. J. Non Linear Mech.
,
128
, p.
103626
.10.1016/j.ijnonlinmec.2020.103626
20.
Anssari-Benam
,
A.
,
Pani
,
M.
, and
Bucchi
,
A.
,
2020
, “
Specialized Strain Energy Functions for Modelling the Contribution of the Collagen Network (Waniso) to the Deformation of Soft Tissues
,”
ASME J. Appl. Mech.
,
87
(
7
), p.
071006
.10.1115/1.4046894
21.
Kanner
,
L. M.
, and
Horgan
,
C. O.
,
2007
, “
Elastic Instabilities for Strain-Stiffening Rubber-Like Spherical and Cylindrical Thin Shells Under Inflation
,”
Int. J. Non Linear. Mech.
,
42
(
2
), pp.
204
215
.10.1016/j.ijnonlinmec.2006.10.010
22.
Horgan
,
C. O.
, and
Saccomandi
,
G.
,
2006
, “
Phenomenological Hyperelastic Strain-Stiffening Constitutive Models for Rubber
,”
Rubber Chem. Technol.
,
79
(
1
), pp.
152
169
.10.5254/1.3547924
23.
Holzapfel
,
G. A.
,
2005
, “
Similarities Between Soft Biological Tissues and Rubberlike Materials
,” Constitutive Models for Rubber IV,
P.-E.
Austrell
and
L.
Kari
eds., Taylor and Francis, London, UK, Proceedings of the Fourth European Conference on Constitutive Models for Rubber, (
ECCMR 2005
), Stockholm, Sweden, pp.
607
617
.https://www.taylorfrancis.com/chapters/edit/10.1201/9781315140216-105/similarities-softbiological-tissues-rubberlike-materials-holzapfel
24.
Anssari-Benam
,
A.
,
2014
, “
Is the Time-Dependent Behaviour of the Aortic Valve Intrinsically Quasi-Linear?
,”
Mech. Time-Depend. Mater.
,
18
(
2
), pp.
339
348
.10.1007/s11043-013-9230-4
25.
Mow
,
V. C.
,
Mak
,
A. F.
,
Lai
,
W. M.
,
Rosenberg
,
L. C.
, and
Tang
,
L.-H.
,
1984
, “
Viscoelastic Properties of Proteoglycan Subunits and Aggregates in Varying Solution Concentrations
,”
J. Biomech.
,
17
(
5
), pp.
325
338
.10.1016/0021-9290(84)90027-7
26.
Zhu
,
W.
,
Iatridis
,
J. C.
,
Hlibczuk
,
V.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1996
, “
Determination of Collagen-Proteoglycan Interactions In Vitro
,”
J. Biomech.
,
29
(
6
), pp.
773
783
.10.1016/0021-9290(95)00136-0
27.
Ogden
,
R. W.
,
Saccomandi
,
G.
, and
Sgura
,
I.
,
2004
, “
Fitting Hyperelastic Models to Experimental Data
,”
Comput. Mech.
,
34
(
6
), pp.
484
502
.10.1007/s00466-004-0593-y
28.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientation
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
29.
Dong
,
H.
, and
Sun
,
W.
,
2021
, “
A Novel Hyperelastic Model for Biological Tissues With Planar Distributed Fibers and a Second Kind of Poisson Effect
,”
J. Mech. Phys. Solids
,
151
, p.
104377
.10.1016/j.jmps.2021.104377
30.
Dong
,
H.
,
Liu
,
M.
,
Qin
,
T.
,
Liang
,
L.
,
Ziganshin
,
B.
,
Ellauzi
,
H.
,
Zafar
,
M.
, et al.,
2022
, “
A Novel Computational Growth Framework for Biological Tissues: Application to Growth of Aortic Root Aneurysm Repaired by the V-Shape Surgery
,”
J. Mech. Behav. Biomed. Mater.
,
127
, p.
105081
.10.1016/j.jmbbm.2022.105081
31.
Waldman
,
S. D.
, and
Lee
,
J. M.
,
2002
, “
Boundary Conditions During Biaxial Testing of Planar Connective Tissues. Part 1: Dynamic Behavior
,”
J. Mater. Sci. Mater. Med.
,
13
(
10
), pp.
933
938
.10.1023/A:1019896210320
32.
Anssari-Benam
,
A.
,
Legerlotz
,
K.
,
Bader
,
D. L.
, and
Screen
,
H. R. C.
,
2012
, “
On the Specimen Length Dependency of Tensile Mechanical Properties in Soft Tissues: Gripping Effects and the Characteristic Decay Length
,”
J. Biomech.
,
45
(
14
), pp.
2481
2482
.10.1016/j.jbiomech.2012.07.016
33.
Sun
,
W.
,
Sacks
,
M. S.
, and
Scott
,
M. J.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
709
15
.10.1115/1.1933931
34.
Bell
,
E. D.
,
Converse
,
M.
,
Mao
,
H.
,
Unnikrishnan
,
G.
,
Reifman
,
J.
, and
Monson
,
K. L.
,
2018
, “
Material Properties of Rat Middle Cerebral Arteries at High Strain Rates
,”
ASME J. Biomech. Eng.
,
140
(
7
), p.
071004
.10.1115/1.4039625
35.
Karunaratne
,
A.
,
Li
,
S.
, and
Bull
,
A. M. J.
,
2018
, “
Nano-Scale Mechanisms Explain the Stiffening and Strengthening of Ligament Tissue With Increasing Strain Rate
,”
Sci. Rep.
,
8
(
1
), p.
3707
.10.1038/s41598-018-21786-z
36.
De Vita
,
R.
, and
Slaughter
,
W. S.
,
2006
, “
A Structural Constitutive Model for the Strain Rate-Dependent Behavior of Anterior Cruciate Ligaments
,”
Int. J. Solids Struct.
,
43
(
6
), pp.
1561
1570
.10.1016/j.ijsolstr.2005.04.022
37.
Karkhaneh Yousefi
,
A.-A.
,
Nazari
,
M. A.
,
Perrier
,
P.
,
Shariat Panahi
,
M.
, and
Payan
,
Y.
,
2018
, “
A Visco-Hyperelastic Constitutive Model and Its Application in Bovine Tongue Tissue
,”
J. Biomech.
,
71
, pp.
190
198
.10.1016/j.jbiomech.2018.02.008
38.
Hosseini-Farid
,
M.
,
Ramzanpour
,
M.
,
McLean
,
J.
,
Ziejewski
,
M.
, and
Karami
,
G.
,
2020
, “
Rate-Dependent Constitutive Modelling of Brain Tissue
,”
Biomech. Model. Mechobiol.
,
19
(
2
), pp.
621
632
.10.1007/s10237-019-01236-z
39.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2012
, “
Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
23
38
.10.1016/j.jmbbm.2012.01.022
40.
Rashid
,
B.
,
Destrade
,
M.
, and
Gilchrist
,
M. D.
,
2014
, “
Mechanical Characterization of Brain Tissue in Tension at Dynamic Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
33
, pp.
43
54
.10.1016/j.jmbbm.2012.07.015
41.
Vogel
,
A.
,
Rakotomanana
,
L.
, and
Pioletti
,
D. P.
,
2017
, “
Viscohyperelastic Strain Energy Function
,”
Biomechanics of Living organs - Hyperelastic Constitutive Laws for Finite Element Modelling
,
Y.
Payan
and
J.
Ohayon
, ed.,
Academic Press
,
Cambridge
, UK, pp.
59
78
.10.1016/B978-0-12-804009-6.00003-1
42.
Vesely
,
I.
,
Boughner
,
D. R.
, and
Leeson-Dietrich
,
J.
,
1995
, “
Bioprosthetic Valve Tissue Viscoelasticity: Implications on Accelerated Pulse Duplicator Testing
,”
Ann. Thorac. Surg.
,
60
, pp.
S379
S383
.10.1016/0003-4975(95)00261-I
43.
Noble
,
C.
,
Kamykowski
,
M.
,
Lerman
,
A.
, and
Young
,
M.
,
2020
, “
Rate-Dependent and Relaxation Properties of Porcine Aortic Heart Valve Biomaterials
,”
IEEE Open J. Eng. Med. Biol.
,
1
, pp.
197
202
.10.1109/OJEMB.2020.3002450
You do not currently have access to this content.