Abstract

Load-induced volume change is an important aspect of knee meniscus function because volume loss creates fluid pressure, which minimizes friction and helps support compressive loads. The knee meniscus is unusual amongst cartilaginous tissues in that it is loaded not only in axial compression, but also in circumferential tension between its tibial attachments. Despite the physiologic importance of the knee meniscus' tensile properties, its volumetric strain in tension has never been directly measured, and predictions of volume strain in the scientific literature are inconsistent. In this study, we apply uniaxial tension to bovine knee meniscus and use biplanar imaging to directly observe the resulting three-dimensional volume change and unloaded recovery, revealing that tension causes volumetric contraction. Compression is already known to also cause contraction; therefore, all major physiologic loads compress and pressurize the meniscus, inducing fluid outflow. Although passive unloaded recovery is often described as slow relative to loaded loss, here we show that at physiologic strains the volume recovery rate in the meniscus upon unloading is faster than the rate of volume loss. These measurements of volumetric strain are an important step toward a complete theory of knee meniscus fluid flow and load support.

References

1.
Baro
,
V. J.
,
Bonnevie
,
E. D.
,
Lai
,
X.
,
Price
,
C.
,
Burris
,
D. L.
, and
Wang
,
L.
,
2012
, “
Functional Characterization of Normal and Degraded Bovine Meniscus: Rate-Dependent Indentation and Friction Studies
,”
Bone
,
51
(
2
), pp.
232
240
.10.1016/j.bone.2012.03.009
2.
Zarek
,
J. M.
, and
Edwards
,
J.
,
1963
, “
The Stress-Structure Relationship in Articular Cartilage
,”
Med. Electron Biol. Eng.
,
1
(
4
), pp.
497
507
.10.1007/BF02474591
3.
Spilker
,
R. L.
,
Donzelli
,
P. S.
, and
Mow
,
V. C.
,
1992
, “
A Transversely Isotropic Biphasic Finite Element Model of the Meniscus
,”
J. Biomech.
,
25
(
9
), pp.
1027
1045
.10.1016/0021-9290(92)90038-3
4.
Ateshian
,
G. A.
,
Lai
,
W. M.
,
Zhu
,
W. B.
, and
Mow
,
V. C.
,
1994
, “
An Asymptotic Solution for the Contact of Two Biphasic Cartilage Layers
,”
J. Biomech.
,
27
(
11
), pp.
1347
1360
.10.1016/0021-9290(94)90044-2
5.
Ateshian
,
G. A.
, and
Wang
,
H.
,
1995
, “
A Theoretical Solution for the Frictionless Rolling Contact of Cylindrical Biphasic Articular Cartilage Layers
,”
J. Biomech.
,
28
(
11
), pp.
1341
1355
.10.1016/0021-9290(95)00008-6
6.
Macirowski
,
T.
,
Tepic
,
S.
, and
Mann
,
R. W.
,
1994
, “
Cartilage Stresses in the Human Hip Joint
,”
ASME J. Biomech. Eng.
,
116
(
1
), pp.
10
18
.10.1115/1.2895693
7.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
1998
, “
Experimental Verification and Theoretical Prediction of Cartilage Interstitial Fluid Pressurization at an Impermeable Contact Interface in Confined Compression
,”
J. Biomech.
,
31
(
10
), pp.
927
934
.10.1016/S0021-9290(98)00105-5
8.
Soltz
,
M. A.
, and
Ateshian
,
G. A.
,
2000
, “
A Conewise Linear Elasticity Mixture Model for the Analysis of Tension-Compression Nonlinearity in Articular Cartilage
,”
ASME J. Biomech. Eng.
,
122
(
6
), pp.
576
586
.10.1115/1.1324669
9.
McCutchen
,
C. W.
,
1959
, “
Mechanism of Animal Joints: Sponge-Hydrostatic and Weeping Bearings
,”
Nature
,
184
(
4695
), pp.
1284
1285
.10.1038/1841284a0
10.
Mow
,
V. C.
,
Bachrach
,
N. M.
, and
Ateshian
,
G. A.
,
1994
, “
The Effects of a Subchondral Bone Perforation on the Load Support Mechanism Within Articular Cartilage
,”
Wear
,
175
(
1–2
), pp.
167
175
.10.1016/0043-1648(94)90180-5
11.
Mow
,
V. C.
,
Kuei
,
S. C.
,
Lai
,
W. M.
, and
Armstrong
,
C. G.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
12.
Danso
,
E. K.
,
Julkunen
,
P.
, and
Korhonen
,
R. K.
,
2018
, “
Poisson's Ratio of Bovine Meniscus Determined Combining Unconfined and Confined Compression
,”
J. Biomech.
,
77
, pp.
233
237
.10.1016/j.jbiomech.2018.07.001
13.
Sweigart
,
M. A.
,
Zhu
,
C. F.
,
Burt
,
D. M.
,
DeHoll
,
P. D.
,
Agrawal
,
C. M.
,
Clanton
,
T. O.
, and
Athanasiou
,
K. A.
,
2004
, “
Intraspecies and Interspecies Comparison of the Compressive Properties of the Medial Meniscus
,”
Ann. Biomed. Eng.
,
32
(
11
), pp.
1569
1579
.10.1114/B:ABME.0000049040.70767.5c
14.
Nguyen
,
A. M.
, and
Levenston
,
M. E.
,
2012
, “
Comparison of Osmotic Swelling Influences on Meniscal Fibrocartilage and Articular Cartilage Tissue Mechanics in Compression and Shear
,”
J. Orthop. Res.
,
30
(
1
), pp.
95
102
.10.1002/jor.21493
15.
Kessler
,
M. A.
,
Glaser
,
C.
,
Tittel
,
S.
,
Reiser
,
M.
, and
Imhoff
,
A. B.
,
2006
, “
Volume Changes in the Menisci and Articular Cartilage of Runners: An In Vivo Investigation Based on 3-D Magnetic Resonance Imaging
,”
Am. J. Sports Med.
,
34
(
5
), pp.
832
836
.10.1177/0363546505282622
16.
Kessler
,
M. A.
,
Glaser
,
C.
,
Tittel
,
S.
,
Reiser
,
M.
, and
Imhoff
,
A. B.
,
2008
, “
Recovery of the Menisci and Articular Cartilage of Runners After Cessation of Exercise: Additional Aspects of In Vivo Investigation Based on 3-Dimensional Magnetic Resonance Imaging
,”
Am. J. Sports Med.
,
36
(
5
), pp.
966
970
.10.1177/0363546507313093
17.
Benfield
,
K. J.
,
Pinkley
,
Z. A.
,
Burruel
,
D. E.
,
Lewis
,
K. J.
,
Ferguson
,
D. S.
, and
Lujan
,
T. J.
,
2022
, “
In Vitro Method to Quantify and Visualize Mechanical Wear in Human Meniscus Subjected to Joint Loading
,”
J. Mech. Behav. Biomed. Mater.
,
133
, p.
105338
.10.1016/j.jmbbm.2022.105338
18.
Peloquin
,
J. M.
,
Santare
,
M. H.
, and
Elliott
,
D. M.
,
2016
, “
Advances in Quantification of Meniscus Tensile Mechanics Including Nonlinearity, Yield, and Failure
,”
ASME J. Biomech. Eng.
,
138
(
2
), p.
021002
.10.1115/1.4032354
19.
Peloquin
,
J. M.
,
Santare
,
M. H.
, and
Elliott
,
D. M.
,
2018
, “
Short Cracks in Knee Meniscus Tissue Cause Strain Concentrations, but Do Not Reduce Ultimate Stress, in Single-Cycle Uniaxial Tension
,”
R. Soc. Open Sci.
,
5
(
11
), p.
181166
.10.1098/rsos.181166
20.
LeRoux
,
M. A.
, and
Setton
,
L. A.
,
2002
, “
Experimental and Biphasic FEM Determinations of the Material Properties and Hydraulic Permeability of the Meniscus in Tension
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
315
321
.10.1115/1.1468868
21.
Tissakht
,
M.
, and
Ahmed
,
A. M.
,
1995
, “
Tensile Stress-Strain Characteristics of the Human Meniscal Material
,”
J. Biomech.
,
28
(
4
), pp.
411
422
.10.1016/0021-9290(94)00081-E
22.
Proctor
,
C. S.
,
Schmidt
,
M. B.
,
Whipple
,
R. R.
,
Kelly
,
M. A.
, and
Mow
,
V. C.
,
1989
, “
Material Properties of the Normal Medial Bovine Meniscus
,”
J. Orthop. Res.
,
7
(
6
), pp.
771
782
.10.1002/jor.1100070602
23.
Goertzen
,
D. J.
,
Budney
,
D. R.
, and
Cinats
,
J. G.
,
1997
, “
Methodology and Apparatus to Determine Material Properties of the Knee Joint Meniscus
,”
Med. Eng. Phys.
,
19
(
5
), pp.
412
419
.10.1016/S1350-4533(97)00011-8
24.
Wilson
,
W.
,
van Rietbergen
,
B.
,
van Donkelaar
,
C.
, and
Huiskes
,
R.
,
2003
, “
Pathways of Load-Induced Cartilage Damage Causing Cartilage Degeneration in the Knee After Meniscectomy
,”
J. Biomech.
,
36
(
6
), pp.
845
851
.10.1016/S0021-9290(03)00004-6
25.
Vadher
,
S. P.
,
Nayeb-Hashemi
,
H.
,
Canavan
,
P. K.
, and
Warner
,
G. M.
,
2006
, “
Finite Element Modeling Following Partial Meniscectomy: Effect of Various Size of Resection
,”
Conference Proceedings of the IEEE Engineering in Medicine and Biology Society
,
New York
, Aug. 30–Sept. 3, pp.
2098
2101
.10.1109/IEMBS.2006.259378
26.
Vaziri
,
A.
,
Nayeb-Hashemi
,
H.
,
Singh
,
A.
, and
Tafti
,
B. A.
,
2008
, “
Influence of Meniscectomy and Meniscus Replacement on the Stress Distribution in Human Knee Joint
,”
Ann. Biomed. Eng.
,
36
(
8
), pp.
1335
1344
.10.1007/s10439-008-9515-y
27.
Haut Donahue
,
T. L.
,
Hull
,
M. L.
,
Rashid
,
M. M.
, and
Jacobs
,
C. R.
,
2003
, “
How the Stiffness of Meniscal Attachments and Meniscal Material Properties Affect Tibio-Femoral Contact Pressure Computed Using a Validated Finite Element Model of the Human Knee Joint
,”
J. Biomech.
,
36
(
1
), pp.
19
34
.10.1016/S0021-9290(02)00305-6
28.
Yao
,
J.
,
Funkenbusch
,
P. D.
,
Snibbe
,
J.
,
Maloney
,
M.
, and
Lerner
,
A. L.
,
2006
, “
Sensitivities of Medial Meniscal Motion and Deformation to Material Properties of Articular Cartilage, Meniscus and Meniscal Attachments Using Design of Experiments Methods
,”
ASME J. Biomech. Eng.
,
128
(
3
), pp.
399
408
.10.1115/1.2191077
29.
Zielinska
,
B.
, and
Donahue
,
T. L. H.
,
2006
, “
3D Finite Element Model of Meniscectomy: Changes in Joint Contact Behavior
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
115
123
.10.1115/1.2132370
30.
Gu
,
K. B.
, and
Li
,
L. P.
,
2011
, “
A Human Knee Joint Model Considering Fluid Pressure and Fiber Orientation in Cartilages and Menisci
,”
Med. Eng. Phys.
,
33
(
4
), pp.
497
503
.10.1016/j.medengphy.2010.12.001
31.
Upton
,
M. L.
,
Guilak
,
F.
,
Laursen
,
T. A.
, and
Setton
,
L. A.
,
2006
, “
Finite Element Modeling Predictions of Region-Specific Cell-Matrix Mechanics in the Meniscus
,”
Biomech. Model Mechanobiol.
,
5
(
2–3
), pp.
140
149
.10.1007/s10237-006-0031-4
32.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Tensile and Compressive Properties of the Medial Rabbit Meniscus
,”
Proc. Inst. Mech. Eng. H
,
219
(
5
), pp.
337
347
.10.1243/095441105X34329
33.
Duenwald
,
S. E.
,
Vanderby
,
R.
, and
Lakes
,
R. S.
,
2009
, “
Viscoelastic Relaxation and Recovery of Tendon
,”
Ann. Biomed. Eng.
,
37
(
6
), pp.
1131
1140
.10.1007/s10439-009-9687-0
34.
Graf
,
B. K.
,
Vanderby
,
R.
,
Ulm
,
M. J.
,
Rogalski
,
R. P.
, and
Thielke
,
R. J.
,
1994
, “
Effect of Preconditioning on the Viscoelastic Response of Primate Patellar Tendon
,”
Arthroscopy
,
10
(
1
), pp.
90
96
.10.1016/S0749-8063(05)80298-1
35.
Crisco
,
J. J.
,
Chelikani
,
S.
,
Brown
,
R. K.
, and
Wolfe
,
S. W.
,
1997
, “
The Effects of Exercise on Ligamentous Stiffness in the Wrist
,”
J. Hand Surg. Am.
,
22
(
1
), pp.
44
48
.10.1016/S0363-5023(05)80178-9
36.
Han
,
S.
,
Gemmell
,
S. J.
,
Helmer
,
K. G.
,
Grigg
,
P.
,
Wellen
,
J. W.
,
Hoffman
,
A. H.
, and
Sotak
,
C. H.
,
2000
, “
Changes in ADC Caused by Tensile Loading of Rabbit Achilles Tendon: Evidence for Water Transport
,”
J. Magn. Reson.
,
144
(
2
), pp.
217
227
.10.1006/jmre.2000.2075
37.
Bezci
,
S. E.
,
Lim
,
S.
, and
O'Connell
,
G. D.
,
2020
, “
Nonlinear Stress-Dependent Recovery Behavior of the Intervertebral Disc
,”
J. Mech. Behav. Biomed. Mater.
,
110
, p.
103881
.10.1016/j.jmbbm.2020.103881
38.
O'Connell
,
G. D.
,
Jacobs
,
N. T.
,
Sen
,
S.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2011
, “
Axial Creep Loading and Unloaded Recovery of the Human Intervertebral Disc and the Effect of Degeneration
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
933
942
.10.1016/j.jmbbm.2011.02.002
39.
Bezci
,
S. E.
, and
O'Connell
,
G. D.
,
2018
, “
Osmotic Pressure Alters Time-Dependent Recovery Behavior of the Intervertebral Disc
,”
Spine
,
43
(
6
), pp.
E334
E340
.10.1097/BRS.0000000000002354
40.
McGill
,
S. M.
, and
Brown
,
S.
,
1992
, “
Creep Response of the Lumbar Spine to Prolonged Full Flexion
,”
Clin. Biomech.
,
7
(
1
), pp.
43
46
.10.1016/0268-0033(92)90007-Q
41.
Schmidt
,
H.
,
Schilling
,
C.
,
Reyna
,
A. L. P.
,
Shirazi-Adl
,
A.
, and
Dreischarf
,
M.
,
2016
, “
Fluid-Flow Dependent Response of Intervertebral Discs Under Cyclic Loading: On the Role of Specimen Preparation and Preconditioning
,”
J. Biomech.
,
49
(
6
), pp.
846
856
.10.1016/j.jbiomech.2015.10.029
42.
Ekström
,
L.
,
Kaigle
,
A.
,
Hult
,
E.
,
Holm
,
S.
,
Rostedt
,
M.
, and
Hansson
,
T.
,
1996
, “
Intervertebral Disc Response to Cyclic Loading–an Animal Model
,”
Proc. Inst. Mech. Eng. H
,
210
(
4
), pp.
249
258
.10.1243/PIME_PROC_1996_210_421_02
43.
Johannessen
,
W.
,
Vresilovic
,
E. J.
,
Wright
,
A. C.
, and
Elliott
,
D. M.
,
2004
, “
Intervertebral Disc Mechanics Are Restored Following Cyclic Loading and Unloaded Recovery
,”
Ann. Biomed. Eng.
,
32
(
1
), pp.
70
76
.10.1023/B:ABME.0000007792.19071.8c
44.
Amin
,
D. B.
,
Lawless
,
I. M.
,
Sommerfeld
,
D.
,
Stanley
,
R. M.
,
Ding
,
B.
, and
Costi
,
J. J.
,
2016
, “
The Effect of Six Degree of Freedom Loading Sequence on the in-Vitro Compressive Properties of Human Lumbar Spine Segments
,”
J. Biomech.
,
49
(
14
), pp.
3407
3414
.10.1016/j.jbiomech.2016.09.009
45.
Malko
,
J. A.
,
Hutton
,
W. C.
, and
Fajman
,
W. A.
,
2002
, “
An In Vivo MRI Study of the Changes in Volume (and Fluid Content) of the Lumbar Intervertebral Disc After Overnight Bed Rest and During an 8-Hour Walking Protocol
,”
J. Spinal Disord. Tech.
,
15
(
2
), pp.
157
163
.10.1097/00024720-200204000-00012
46.
Tyrrell
,
A. R.
,
Reilly
,
T.
, and
Troup
,
J. D.
,
1985
, “
Circadian Variation in Stature and the Effects of Spinal Loading
,”
Spine
,
10
(
2
), pp.
161
164
.10.1097/00007632-198503000-00011
47.
Wale
,
M. E.
,
Nesbitt
,
D. Q.
,
Henderson
,
B. S.
,
Fitzpatrick
,
C. K.
,
Creechley
,
J. J.
, and
Lujan
,
T. J.
,
2021
, “
Applying ASTM Standards to Tensile Tests of Musculoskeletal Soft Tissue: Methods to Reduce Grip Failures and Promote Reproducibility
,”
ASME J. Biomech. Eng.
,
143
(
1
), p.
011011
.10.1115/1.4048646
48.
Creechley
,
J. J.
,
Krentz
,
M. E.
, and
Lujan
,
T. J.
,
2017
, “
Fatigue Life of Bovine Meniscus Under Longitudinal and Transverse Tensile Loading
,”
J. Mech. Behav. Biomed Mater.
,
69
, pp.
185
192
.10.1016/j.jmbbm.2016.12.020
49.
Henderson
,
B. S.
,
Cudworth
,
K. F.
,
Wale
,
M. E.
,
Siegel
,
D. N.
, and
Lujan
,
T. J.
,
2022
, “
Tensile Fatigue Strength and Endurance Limit of Human Meniscus
,”
J. Mech. Behav. Biomed. Mater.
,
127
, p.
105057
.10.1016/j.jmbbm.2021.105057
50.
Szczesny
,
S. E.
,
Peloquin
,
J. M.
,
Cortes
,
D. H.
,
Kadlowec
,
J. A.
,
Soslowsky
,
L. J.
, and
Elliott
,
D. M.
,
2012
, “
Biaxial Tensile Testing and Constitutive Modeling of Human Supraspinatus Tendon
,”
ASME J. Biomech. Eng.
,
134
(
2
), p.
021004
.10.1115/1.4005852
51.
Favata
,
M.
,
2006
, “
Scarless Healing in the Fetus: Implications and Strategies for Postnatal Tendon Repair
,”
Ph.D. dissertation
,
University of Pennsylvania
,
Philadelphia, PA
.https://repository.upenn.edu/dissertations/AAI3246156
52.
Swank
,
K. R.
,
Behn
,
A. W.
, and
Dragoo
,
J. L.
,
2015
, “
The Effect of Donor Age on Structural and Mechanical Properties of Allograft Tendons
,”
Am J. Sports Med.
,
43
(
2
), pp.
453
459
.10.1177/0363546514557246
53.
Schechtman
,
H.
, and
Bader
,
D. L.
,
1997
, “
In Vitro Fatigue of Human Tendons
,”
J. Biomech.
,
30
(
8
), pp.
829
835
.10.1016/S0021-9290(97)00033-X
54.
Szczesny
,
S. E.
, and
Elliott
,
D. M.
,
2014
, “
Interfibrillar Shear Stress Is the Loading Mechanism of Collagen Fibrils in Tendon
,”
Acta Biomater.
,
10
(
6
), pp.
2582
2590
.10.1016/j.actbio.2014.01.032
55.
Lee
,
A. H.
,
Szczesny
,
S. E.
,
Santare
,
M. H.
, and
Elliott
,
D. M.
,
2017
, “
Investigating Mechanisms of Tendon Damage by Measuring Multi-Scale Recovery Following Tensile Loading
,”
Acta Biomater.
,
57
, pp.
363
372
.10.1016/j.actbio.2017.04.011
56.
Han
,
W. M.
,
Heo
,
S.-J.
,
Driscoll
,
T. P.
,
Delucca
,
J. F.
,
McLeod
,
C. M.
,
Smith
,
L. J.
,
Duncan
,
R. L.
, et al.,
2016
, “
Microstructural Heterogeneity Directs Micromechanics and Mechanobiology in Native and Engineered Fibrocartilage
,”
Nat. Mater.
,
15
(
4
), pp.
477
484
.10.1038/nmat4520
57.
Han
,
W. M.
,
Heo
,
S.-J.
,
Driscoll
,
T. P.
,
Smith
,
L. J.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2013
, “
Macro- to Microscale Strain Transfer in Fibrous Tissues Is Heterogeneous and Tissue-Specific
,”
Biophys. J.
,
105
(
3
), pp.
807
817
.10.1016/j.bpj.2013.06.023
58.
Firminger
,
C. R.
, and
Edwards
,
W. B.
,
2021
, “
A Biomechanical Study of Clamping Technique on Patellar Tendon Surface Strain and Material Properties Using Digital Image Correlation
,”
J. Mech. Behav. Biomed. Mater.
,
113
, p.
104156
.10.1016/j.jmbbm.2020.104156
59.
Koeller
,
W.
,
Funke
,
F.
, and
Hartmann
,
F.
,
1984
, “
Biomechanical Behavior of Human Intervertebral Discs Subjected to Long Lasting Axial Loading
,”
Biorheology
,
21
(
5
), pp.
675
686
.10.3233/BIR-1984-21502
60.
Showalter
,
B. L.
,
Malhotra
,
N. R.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Nucleotomy Reduces the Effects of Cyclic Compressive Loading With Unloaded Recovery on Human Intervertebral Discs
,”
J. Biomech.
,
47
(
11
), pp.
2633
2640
.10.1016/j.jbiomech.2014.05.018
61.
Avants
,
B. B.
,
Tustison
,
N. J.
,
Stauffer
,
M.
,
Song
,
G.
,
Wu
,
B.
, and
Gee
,
J. C.
,
2014
, “
The Insight ToolKit Image Registration Framework
,”
Front. Neuroinf.
,
8
, p.
44
.10.3389/fninf.2014.00044
62.
Avants
,
B. B.
,
Tustison
,
N. J.
,
Wu
,
J.
,
Cook
,
P. A.
, and
Gee
,
J. C.
,
2011
, “
An Open Source Multivariate Framework for N-Tissue Segmentation With Evaluation on Public Data
,”
Neuroinformatics
,
9
(
4
), pp.
381
400
.10.1007/s12021-011-9109-y
63.
Voinier
,
S.
,
Moore
,
A. C.
,
Benson
,
J. M.
,
Price
,
C.
, and
Burris
,
D. L.
,
2022
, “
The Modes and Competing Rates of Cartilage Fluid Loss and Recovery
,”
Acta Biomater.
,
138
, pp.
390
397
.10.1016/j.actbio.2021.11.014
64.
R Development Core Team
,
2022
, “
R: A Language and Environment for Statistical Computing
,” R Foundation for Statistical Computing, Vienna, Austria.
65.
Wickham
,
H.
,
2016
,
ggplot2: Elegant Graphics for Data Analysis
,
Springer-Verlag
,
New York
.
66.
Wickham
,
H.
,
François
,
R.
,
Henry
,
L.
, and
Müller
,
K.
,
2022
, “
Dplyr: A Grammar of Data Manipulation
”.https://dplyr.tidyverse.org/authors.html#citation
67.
Müller
,
K.
, and
Wickham
,
H.
,
2022
, “
Tibble: Simple Data Frames
”.https://tibble.tidyverse.org/authors.html#citation
68.
Benjamin
,
D. J.
,
Berger
,
J. O.
,
Johannesson
,
M.
,
Nosek
,
B. A.
,
Wagenmakers
,
E.-J.
,
Berk
,
R.
, and
Bollen
,
K. A.
,
2017
, “
Redefine Statistical Significance
,”
Nat. Human Behav.
, 2, p.
1
.10.1038/s41562-017-0189-z
69.
Ioannidis
,
J. P. A.
,
2005
, “
Why Most Published Research Findings Are False
,”
PLoS Med.
,
2
(
8
), p.
e124
.10.1371/journal.pmed.0020124
70.
Chang
,
D.
,
Lottman
,
L.
,
Chen
,
A.
,
Schinagl
,
R.
,
Albrecht
,
D.
,
Pedowitz
,
R.
,
Frank
,
L.
, and
Sah
,
R.
,
1999
, “
The Depth-Dependent, Multi-Axial Properties of Aged Human Patellar Cartilage in Tension
,”
Trans. Orthop. Res. Soc.
, 24, p.
644
.10.13140/2.1.1174.8808
71.
Woo
,
S. L.
,
Lubock
,
P.
,
Gomez
,
M. A.
,
Jemmott
,
G. F.
,
Kuei
,
S. C.
, and
Akeson
,
W. H.
,
1979
, “
Large Deformation Nonhomogeneous and Directional Properties of Articular Cartilage in Uniaxial Tension
,”
J. Biomech.
,
12
(
6
), pp.
437
446
.10.1016/0021-9290(79)90028-9
72.
Mononen
,
M. E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2015
, “
Implementation of a Gait Cycle Loading Into Healthy and Meniscectomised Knee Joint Models With Fibril-Reinforced Articular Cartilage
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
2
), pp.
141
152
.10.1080/10255842.2013.783575
73.
Wheatley
,
B. B.
,
Fischenich
,
K. M.
,
Button
,
K. D.
,
Haut
,
R. C.
, and
Haut Donahue
,
T. L.
,
2015
, “
An Optimized Transversely Isotropic, Hyper-Poro-Viscoelastic Finite Element Model of the Meniscus to Evaluate Mechanical Degradation Following Traumatic Loading
,”
J. Biomech.
,
48
(
8
), pp.
1454
1460
.10.1016/j.jbiomech.2015.02.028
74.
Freutel
,
M.
,
Galbusera
,
F.
,
Ignatius
,
A.
, and
Dürselen
,
L.
,
2015
, “
Material Properties of Individual Menisci and Their Attachments Obtained Through Inverse FE-Analysis
,”
J. Biomech.
,
48
(
8
), pp.
1343
1349
.10.1016/j.jbiomech.2015.03.014
75.
Mononen
,
M. E.
,
Jurvelin
,
J. S.
, and
Korhonen
,
R. K.
,
2013
, “
Effects of Radial Tears and Partial Meniscectomy of Lateral Meniscus on the Knee Joint Mechanics During the Stance Phase of the Gait Cycle—a 3D Finite Element Study
,”
J. Orthopaedic Res.
,
31
(
8
), pp.
1208
1217
.10.1002/jor.22358
76.
Meakin
,
J. R.
,
Shrive
,
N. G.
,
Frank
,
C. B.
, and
Hart
,
D. A.
,
2003
, “
Finite Element Analysis of the Meniscus: The Influence of Geometry and Material Properties on Its Behaviour
,”
Knee
,
10
(
1
), pp.
33
41
.10.1016/S0968-0160(02)00106-0
77.
Carniel
,
T. A.
,
Formenton
,
A. B. K.
,
Klahr
,
B.
,
Vassoler
,
J. M.
,
de Mello Roesler
,
C. R.
, and
Fancello
,
E. A.
,
2019
, “
An Experimental and Numerical Study on the Transverse Deformations in Tensile Test of Tendons
,”
J. Biomech.
,
87
, pp.
120
126
.10.1016/j.jbiomech.2019.02.028
78.
Reese
,
S. P.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2013
, “
Micromechanical Model of a Surrogate for Collagenous Soft Tissues: Development, Validation and Analysis of Mesoscale Size Effects
,”
Biomech. Model Mechanobiol.
,
12
(
6
), pp.
1195
1204
.10.1007/s10237-013-0475-2
79.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.10.1097/00007632-199406000-00002
80.
Sun
,
W.
,
Scott
,
M. J.
, and
Sacks
,
M. S.
,
2005
, “
Effects of Boundary Conditions on the Estimation of the Planar Biaxial Mechanical Properties of Soft Tissues
,”
ASME J. Biomech. Eng.
,
127
(
4
), pp.
709
715
.10.1115/1.1933931
81.
Szczesny
,
S. E.
,
Caplan
,
J. L.
,
Pedersen
,
P.
, and
Elliott
,
D. M.
,
2015
, “
Quantification of Interfibrillar Shear Stress in Aligned Soft Collagenous Tissues Via Notch Tension Testing
,”
Sci. Rep.
,
5
(
1
), p.
14649
.10.1038/srep14649
82.
Horgan
,
C. O.
, and
Simmonds
,
J. G.
,
1994
, “
Saint-Venant End Effects in Composite Structures
,”
Compos. Eng.
,
4
(
3
), pp.
279
286
.10.1016/0961-9526(94)90078-7
83.
Andrews
,
S. H.
,
Ronsky
,
J. L.
,
Rattner
,
J. B.
,
Shrive
,
N. G.
, and
Jamniczky
,
H. A.
,
2013
, “
An Evaluation of Meniscal Collagenous Structure Using Optical Projection Tomography
,”
BMC Med. Imaging
,
13
(
1
), p.
21
.10.1186/1471-2342-13-21
84.
Petersen
,
W.
, and
Tillmann
,
B.
,
1998
, “
Collagenous Fibril Texture of the Human Knee Joint Menisci
,”
Anat. Embryol.
,
197
(
4
), pp.
317
324
.10.1007/s004290050141
85.
Kelly
,
M. A.
,
Fithian
,
D. C.
,
Chern
,
K. Y.
, and
Mow
,
V. C.
,
1990
, “
Structure and Function of the Meniscus: Basic and Clinical Implications
,”
Biomechanics of Diarthrodial Joints
A.
Ratcliffe
,
S. L. -Y.
Woo
, and
V. C.
Mow
, eds.,
Springer
,
New York
, pp.
191
211
.
86.
Skaggs
,
D. L.
,
Warden
,
W. H.
, and
Mow
,
V. C.
,
1994
, “
Radial Tie Fibers Influence the Tensile Properties of the Bovine Medial Meniscus
,”
J. Orthop. Res.
,
12
(
2
), pp.
176
185
.10.1002/jor.1100120205
87.
Andrews
,
S. H. J.
,
Rattner
,
J. B.
,
Shrive
,
N. G.
, and
Ronsky
,
J. L.
,
2015
, “
Swelling Significantly Affects the Material Properties of the Menisci in Compression
,”
J. Biomech.
,
48
(
8
), pp.
1485
1489
.10.1016/j.jbiomech.2015.02.001
88.
Adeeb
,
S.
,
Ali
,
A.
,
Shrive
,
N.
,
Frank
,
C.
, and
Smith
,
D.
,
2004
, “
Modelling the Behaviour of Ligaments: A Technical Note
,”
Comput. Methods Biomech. Biomed. Eng.
,
7
(
1
), pp.
33
42
.10.1080/10255840310001637266
89.
Reese
,
S. P.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Micromechanical Models of Helical Superstructures in Ligament and Tendon Fibers Predict Large Poisson's Ratios
,”
J. Biomech.
,
43
(
7
), pp.
1394
1400
.10.1016/j.jbiomech.2010.01.004
90.
Ban
,
E.
,
Wang
,
H.
,
Franklin
,
J. M.
,
Liphardt
,
J. T.
,
Janmey
,
P. A.
, and
Shenoy
,
V. B.
,
2019
, “
Strong Triaxial Coupling and Anomalous Poisson Effect in Collagen Networks
,”
Proc. Natl. Acad. Sci USA
,
116
(
14
), pp.
6790
6799
.10.1073/pnas.1815659116
91.
Kiviranta
,
P.
,
Rieppo
,
J.
,
Korhonen
,
R. K.
,
Julkunen
,
P.
,
Töyräs
,
J.
, and
Jurvelin
,
J. S.
,
2006
, “
Collagen Network Primarily Controls Poisson's Ratio of Bovine Articular Cartilage in Compression
,”
J. Orthop. Res.
,
24
(
4
), pp.
690
699
.10.1002/jor.20107
92.
Danso
,
E. K.
,
Mäkelä
,
J. T. A.
,
Tanska
,
P.
,
Mononen
,
M. E.
,
Honkanen
,
J. T. J.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
, et al.,
2015
, “
Characterization of Site-Specific Biomechanical Properties of Human Meniscus-Importance of Collagen and Fluid on Mechanical Nonlinearities
,”
J. Biomech.
,
48
(
8
), pp.
1499
1507
.10.1016/j.jbiomech.2015.01.048
93.
Párraga Quiroga
,
J. M.
,
Emans
,
P.
,
Wilson
,
W.
,
Ito
,
K.
, and
van Donkelaar
,
C. C.
,
2014
, “
Should a Native Depth-Dependent Distribution of Human Meniscus Constitutive Components Be Considered in FEA-Models of the Knee Joint?
,”
J. Mech. Behav. Biomed. Mater.
,
38
, pp.
242
250
.10.1016/j.jmbbm.2014.03.005
94.
Gatt
,
R.
,
Vella Wood
,
M.
,
Gatt
,
A.
,
Zarb
,
F.
,
Formosa
,
C.
,
Azzopardi
,
K. M.
,
Casha
,
A.
,
Agius
,
T. P.
,
Schembri-Wismayer
,
P.
,
Attard
,
L.
,
Chockalingam
,
N.
, and
Grima
,
J. N.
,
2015
, “
Negative Poisson's Ratios in Tendons: An Unexpected Mechanical Response
,”
Acta Biomater.
,
24
, pp.
201
208
.10.1016/j.actbio.2015.06.018
95.
Nagelli
,
C. V.
,
Hooke
,
A.
,
Quirk
,
N.
,
De Padilla
,
C. L.
,
Hewett
,
T. E.
,
van Griensven
,
M.
,
Coenen
,
M.
,
Berglund
,
L.
,
Evans
,
C. H.
, and
Müller
,
S. A.
,
2022
, “
Mechanical and Strain Behaviour of Human Achilles Tendon During In Vitro Testing to Failure
,”
Eur. Cell Mater.
,
43
, pp.
153
161
.10.22203/eCM.v043a12
96.
Luyckx
,
T.
,
Verstraete
,
M.
,
De Roo
,
K.
,
De Waele
,
W.
,
Bellemans
,
J.
, and
Victor
,
J.
,
2014
, “
Digital Image Correlation as a Tool for Three-Dimensional Strain Analysis in Human Tendon Tissue
,”
J. Exp. Orthop.
,
1
(
1
), p.
7
.10.1186/s40634-014-0007-8
97.
Reese
,
S. P.
, and
Weiss
,
J. A.
,
2013
, “
Tendon Fascicles Exhibit a Linear Correlation Between Poisson's Ratio and Force During Uniaxial Stress Relaxation
,”
ASME J. Biomech. Eng.
,
135
(
3
), p.
34501
.10.1115/1.4023134
98.
Swedberg
,
A. M.
,
Reese
,
S. P.
,
Maas
,
S. A.
,
Ellis
,
B. J.
, and
Weiss
,
J. A.
,
2014
, “
Continuum Description of the Poisson's Ratio of Ligament and Tendon Under Finite Deformation
,”
J. Biomech.
,
47
(
12
), pp.
3201
3209
.10.1016/j.jbiomech.2014.05.011
99.
Cheng
,
V. W. T.
, and
Screen
,
H. R. C.
,
2007
, “
The Micro-Structural Strain Response of Tendon
,”
J. Mater. Sci.
,
42
(
21
), pp.
8957
8965
.10.1007/s10853-007-1653-3
100.
Lynch
,
H. A.
,
Johannessen
,
W.
,
Wu
,
J. P.
,
Jawa
,
A.
, and
Elliott
,
D. M.
,
2003
, “
Effect of Fiber Orientation and Strain Rate on the Nonlinear Uniaxial Tensile Material Properties of Tendon
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
726
731
.10.1115/1.1614819
101.
Hewitt
,
J.
,
Guilak
,
F.
,
Glisson
,
R.
, and
Vail
,
T. P.
,
2001
, “
Regional Material Properties of the Human Hip Joint Capsule Ligaments
,”
J. Orthop. Res.
,
19
(
3
), pp.
359
364
.10.1016/S0736-0266(00)00035-8
102.
Edelsten
,
L.
,
Jeffrey
,
J. E.
,
Burgin
,
L. V.
, and
Aspden
,
R. M.
,
2010
, “
Viscoelastic Deformation of Articular Cartilage During Impact Loading
,”
Soft Matter
,
6
(
20
), pp.
5206
5212
.10.1039/c0sm00097c
103.
Elliott
,
D. M.
,
Narmoneva
,
D. A.
, and
Setton
,
L. A.
,
2002
, “
Direct Measurement of the Poisson's Ratio of Human Patella Cartilage in Tension
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
223
228
.10.1115/1.1449905
104.
Huang
,
C.-Y.
,
Stankiewicz
,
A.
,
Ateshian
,
G. A.
, and
Mow
,
V. C.
,
2005
, “
Anisotropy, Inhomogeneity, and Tension–Compression Nonlinearity of Human Glenohumeral Cartilage in Finite Deformation
,”
J. Biomech.
,
38
(
4
), pp.
799
809
.10.1016/j.jbiomech.2004.05.006
105.
Holzapfel
,
G. A.
, and
Ogden
,
R. W.
,
2009
, “
On Planar Biaxial Tests for Anisotropic Nonlinearly Elastic Solids. A Continuum Mechanical Framework
,”
Math. Mech. Solids
,
14
(
5
), pp.
474
489
.10.1177/1081286507084411
106.
Moore
,
A. C.
, and
Burris
,
D. L.
,
2017
, “
Tribological Rehydration of Cartilage and Its Potential Role in Preserving Joint Health
,”
Osteoarthritis Cartilage
,
25
(
1
), pp.
99
107
.10.1016/j.joca.2016.09.018
107.
Chia
,
H. N.
, and
Hull
,
M. L.
,
2008
, “
Compressive Moduli of the Human Medial Meniscus in the Axial and Radial Directions at Equilibrium and at a Physiological Strain Rate
,”
J. Orthop. Res.
,
26
(
7
), pp.
951
956
.10.1002/jor.20573
108.
Warnecke
,
D.
,
Balko
,
J.
,
Haas
,
J.
,
Bieger
,
R.
,
Leucht
,
F.
,
Wolf
,
N.
,
Schild
,
N. B.
, et al.,
2020
, “
Degeneration Alters the Biomechanical Properties and Structural Composition of Lateral Human Menisci
,”
Osteoarthritis Cartilage
,
28
(
11
), pp.
1482
1491
.10.1016/j.joca.2020.07.004
109.
Walker
,
P. S.
, and
Erkman
,
M. J.
,
1975
, “
The Role of the Menisci in Force Transmission Across the Knee
,”
Clin. Orthop. Relat. Res.
, (
109
), pp.
184
192
.10.1097/00003086-197506000-00027
110.
Gilbert
,
S.
,
Chen
,
T.
,
Hutchinson
,
I. D.
,
Choi
,
D.
,
Voigt
,
C.
,
Warren
,
R. F.
, and
Maher
,
S. A.
,
2014
, “
Dynamic Contact Mechanics on the Tibial Plateau of the Human Knee During Activities of Daily Living
,”
J. Biomech.
,
47
(
9
), pp.
2006
2012
.10.1016/j.jbiomech.2013.11.003
111.
Mow
,
V.
,
Gibbs
,
M.
,
Lai
,
W.
,
Zhu
,
W.
, and
Athanasiou
,
K.
,
1989
, “
Biphasic Indentation of Articular Cartilage—II. A Numerical Algorithm and an Experimental Study
,”
J. Biomech.
,
22
(
8–9
), pp.
853
861
.10.1016/0021-9290(89)90069-9
112.
Sweigart
,
M. A.
, and
Athanasiou
,
K. A.
,
2005
, “
Biomechanical Characteristics of the Normal Medial and Lateral Porcine Knee Menisci
,”
Proc. Inst. Mech. Eng. H
,
219
(
1
), pp.
53
62
.10.1243/095441105X9174
113.
Athanasiou
,
K. A.
,
Agarwal
,
A.
, and
Dzida
,
F. J.
,
1994
, “
Comparative Study of the Intrinsic Mechanical Properties of the Human Acetabular and Femoral Head Cartilage
,” .
J Orthop. Res.
,
12
(
3
), pp.
340
349
.10.1002/jor.1100120306
114.
Eklund
,
J. A.
, and
Corlett
,
E. N.
,
1984
, “
Shrinkage as a Measure of the Effect of Load on the Spine
,”
Spine
,
9
(
2
), pp.
189
194
.10.1097/00007632-198403000-00009
115.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
(
1
), pp.
1
17
.10.1016/0043-1648(62)90176-X
116.
Werbner
,
B.
,
Zhou
,
M.
,
McMindes
,
N.
,
Lee
,
A.
,
Lee
,
M.
, and
O'Connell
,
G. D.
,
2022
, “
Saline-Polyethylene Glycol Blends Preserve In Vitro Annulus Fibrosus Hydration and Mechanics: An Experimental and Finite-Element Analysis
,”
J. Mech. Behav. Biomed. Mater.
,
125
, p.
104951
.10.1016/j.jmbbm.2021.104951
117.
Han
,
W. M.
,
Nerurkar
,
N. L.
,
Smith
,
L. J.
,
Jacobs
,
N. T.
,
Mauck
,
R. L.
, and
Elliott
,
D. M.
,
2012
, “
Multi-Scale Structural and Tensile Mechanical Response of Annulus Fibrosus to Osmotic Loading
,”
Ann. Biomed. Eng.
,
40
(
7
), pp.
1610
1621
.10.1007/s10439-012-0525-4
118.
Żak
,
M.
, and
Pezowicz
,
C.
,
2016
, “
Analysis of the Impact of the Course of Hydration on the Mechanical Properties of the Annulus Fibrosus of the Intervertebral Disc
,”
Eur. Spine J.
,
25
(
9
), pp.
2681
2690
.10.1007/s00586-016-4704-0
119.
Werbner
,
B.
,
Spack
,
K.
, and
O'Connell
,
G. D.
,
2019
, “
Bovine Annulus Fibrosus Hydration Affects Rate-Dependent Failure Mechanics in Tension
,”
J. Biomech.
,
89
, pp.
34
39
.10.1016/j.jbiomech.2019.04.008
120.
Costi
,
J. J.
,
Hearn
,
T. C.
, and
Fazzalari
,
N. L.
,
2002
, “
The Effect of Hydration on the Stiffness of Intervertebral Discs in an Ovine Model
,”
Clin. Biomech.
,
17
(
6
), pp.
446
455
.10.1016/S0268-0033(02)00035-9
121.
Safa
,
B. N.
,
Meadows
,
K. D.
,
Szczesny
,
S. E.
, and
Elliott
,
D. M.
,
2017
, “
Exposure to Buffer Solution Alters Tendon Hydration and Mechanics
,”
J. Biomech.
,
61
, pp.
18
25
.10.1016/j.jbiomech.2017.06.045
122.
Adams
,
M. A.
,
Freeman
,
B. J.
,
Morrison
,
H. P.
,
Nelson
,
I. W.
, and
Dolan
,
P.
,
2000
, “
Mechanical Initiation of Intervertebral Disc Degeneration
,”
Spine
,
25
(
13
), pp.
1625
1636
.10.1097/00007632-200007010-00005
123.
Johannessen
,
W.
,
Cloyd
,
J. M.
,
O'Connell
,
G. D.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2006
, “
Trans-Endplate Nucleotomy Increases Deformation and Creep Response in Axial Loading
,”
Ann. Biomed. Eng.
,
34
(
4
), pp.
687
696
.10.1007/s10439-005-9070-8
124.
Costi
,
J. J.
,
Ledet
,
E. H.
, and
O'Connell
,
G. D.
,
2021
, “
Spine Biomechanical Testing Methodologies: The Controversy of Consensus Vs Scientific Evidence
,”
JOR Spine
,
4
(
1
), p.
e1138
.10.1002/jsp2.1138
125.
Uezaki
,
N.
,
Kobayashi
,
A.
, and
Matsushige
,
K.
,
1979
, “
The Viscoelastic Properties of the Human Semilunar Cartilage
,”
J. Biomech.
,
12
(
1
), pp.
65
73
.10.1016/0021-9290(79)90010-1
You do not currently have access to this content.