Abstract

The topic of kinematics is fundamental to engineering and has a significant bearing on clinical evaluations of human movement. For those studying biomechanics, this topic is often overlooked in importance. The degree to which kinematic fundamentals are included in Biomedical engineering (BmE) curriculums is not consistent across programs and often foundational understandings are gained only after reading literature if a research or development project requires that knowledge. The purpose of this paper is to present the important theories and methods of kinematic analysis and synthesis that should be in the “toolbox” of students of biomechanics. Each topic is briefly presented accompanied by an example or two. Deeper learning of each topic is left to the reader, with the help of some sample references to begin that journey.

References

1.
Radcliffe
,
C. W.
,
1974
, “
Polycentric Linkages as Prosthetic Knee Mechanisms for the Through-Knee Amputee
,”
Proceedings of the World Congress of ISPO
, INTERBOR and APO,
Montreux, Switzerland
, Oct. 27, pp.
146
160
.
2.
Erdman
,
A. G.
,
Sandor
,
G. N.
, and
Kota
,
S.
,
1983
,
Mechanism Design: Analysis and Synthesis
, 4rd ed.,
Prentice Hall
,
Angelwood Cliffs, NJ
, p.
665
.
3.
Norton
,
R.
, 2003,
Design of Machinery - An Introduction to the Synthesis and Analysis of Mechanisms and Machines
, 5th ed.,
McGraw-Hill
,
Angelwood Cliffs, NJ
.
4.
Sandor
,
G. N.
, and
Erdman
,
A. G.
,
1984
,
Advanced Mechanism Design: Analysis and Synthesis
, Vol.
2
;
Prentice-Hall
,
Angelwood Cliffs, NJ
, p
670
.
5.
Tsuge
,
B. Y.
,
Plecnik
,
M. M.
, and
Michael McCarthy
,
J.
,
2016
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
61009
.10.1115/1.4034141
6.
Guo
,
G.
,
Zhang
,
J.
, and
Gruver
,
W. A.
,
1993
, “
Optimal Design of a Six-Bar Linkage With One Degree of Freedom for an Anthropomorphic Three-Jointed Finger Mechanism
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
207
(
3
), pp.
185
190
.10.1243/PIME_PROC_1993_207_291_02
7.
Haulin
,
E. N.
,
Lakis
,
A. A.
, and
Vinet
,
R.
,
2001
, “
Optimal Synthesis of a Planar Four-Link Mechanism Used in a Hand Prosthesis
,”
Mech. Mach. Theory
,
36
(
11–12
), pp.
1203
1214
.10.1016/S0094-114X(01)00039-8
8.
Demuynck
,
M.
,
Delnavaz
,
A.
, and
Jérémie
,
V.
,
2021
, “
Human Temporomandibular Joint Motion: A Synthesis Approach for Designing a Six-Bar Kinematic Simulator
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
065001
.10.1115/1.4050828
9.
Davies
,
T. H.
,
1983
, “
Mechanical Networks - II: Formulae for Degrees of Mobility and Redundancy
,”
Mech. Mach. Theory
,
18
(
2
), pp.
95
101
.10.1016/0094-114X(83)90100-3
10.
Chebyshev
,
P. L.
,
1853
, “
Théorie Des Mécanismes Connus Sous le Nom de Parallélogrammes
,”
Imprimerie de L'Académie Impériale Des Sciences
, St.-Pétersbourg, Russia.
11.
Lim
,
J. J. B.
, and
Erdman
,
A. G.
,
2002
, “
Application of Type Synthesis Theory to the Redesign of a Complex Surgical Instruments
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
265
272
.10.1115/1.1468635
12.
Lim
,
J. J.
, and
Erdman
,
A. G.
,
2003
, “
A Review of Mechanisms Used in Laparoscopic Instruments
,”
J. Mech. Mach. Theory
,
38
(
11
), pp.
1133
1147
.10.1016/S0094-114X(03)00063-6
13.
Yu
,
N.
,
Erdman
,
A. G.
, and
Byers
,
B.
,
2002
, “
LINCAGES 2000: Latest Developments and Case Study
,”
ASME
Paper No. DETC2002/MECH-34375.10.1115/DETC2002/MECH-34375
14.
Rector
,
M. D.
,
2022
, “
Linkage Mechanism Designer and Simulator
,”.https://blog.rectorsquid.com/linkage-mechanismdesigner-and-simulator/
15.
Rubel
,
A. J.
, and
Kaufman
,
R. E.
,
1977
, “
KINSYN III: A New Human-Engineered System for Interactive Computer-Aided Design of Planar Linkages
,”
ASME J. Eng. Ind.
,
99
(
2
), pp.
440
448
.10.1115/1.3439257
16.
Erdman
,
A. G.
,
2002
, “
A Multi-Hinged Skate and Methods for Construction of Same
,” Patent No.
US6431558B1
.https://patents.google.com/patent/US6431558B1/en
17.
Im
,
H. S.
,
Goltzer
,
O.
, and
Sheehan
,
F. T.
,
2015
, “
The Effective Quadriceps and Patellar Tendon Moment Arms Relative to the Tibiofemoral Finite Helical Axis
,”
J Biomech.
,
48
(
14
), pp.
3737
3742
.10.1016/j.jbiomech.2015.04.003
18.
Isaacson
,
R.
,
Hultgren
,
B.
, and
Erdman
,
A. G.
,
1977
, “
Kinematics of Jaw Growth
,”
ASME J. Biomech. Eng.
, 100(2), pp.
93
98
.10.1115/1.3426198
19.
Grood
,
E. S.
,
Noyes
,
F. R.
,
Butler
,
D. L.
, and
Suntay
,
W. J.
,
1981
, “
Ligamentous and Capsular Restraints Preventing Straight Medial and Lateral Laxity in Intact Human Cadaver Knees
,”
J Bone Jt. Surg Am.
,
63
(
8
), pp.
1257
1269
.10.2106/00004623-198163080-00007
20.
InMotion Technologies, Ltd.
,
2022
, “
Dartfish 10.0 Software Video Analysis System
,”
InMotion Technologies, Ltd.
,
Fribourg, Switzerland
.
21.
Woltring
,
H. J.
,
Huiskes
,
R.
,
de Lange
,
A.
, and
Veldpaus
,
F. E.
,
1985
, “
Finite Centroid and Helical Axis Estimation From Noisy Landmark Measurements in the Study of Human Joint Kinematics
,”
J. Biomech.
,
18
(
5
), pp.
379
389
.10.1016/0021-9290(85)90293-3
22.
Ancillao
,
A.
,
2022
, “
The Helical Axis of Anatomical Joints: Calculation Methods, Literature Review, and Software Implementation
,”
Med. Biol. Eng. Comput.
,
60
(
7
), pp.
1815
1825
.10.1007/s11517-022-02576-2
23.
Sheehan
,
F. T.
,
2010
, “
The Instantaneous Helical Axis of the Subtalar and Talocrural Joints: A Non-Invasive In Vivo Dynamic Study
,”
J. Foot Ankle Res.
,
3
(
1
), pp. 3–13.10.1186/1757-1146-3-13
24.
van den Bogert
,
A. J.
,
Reinschmidt
,
C.
, and
Lundberg
,
A.
,
2008
, “
Helical Axes of Skeletal Knee Joint Motion During Running
,”
J. Biomech.
,
41
(
8
), pp.
1632
1638
.10.1016/j.jbiomech.2008.03.018
25.
Shiavi
,
R.
,
Limbird
,
T.
,
Frazer
,
M.
,
Stivers
,
K.
,
Strauss
,
A.
, and
Abramovitz
,
J.
,
1987
, “
Helical Motion Analysis of the Knee—II. Kinematics of Uninjured and Injured Knees During Walking and Pivoting
,”
J. Biomech.
,
20
(
7
), pp.
653
665
.10.1016/0021-9290(87)90032-7
26.
Chèze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
,
1988
, “
Determination of Joint Functional Axes From Noisy Marker Data Using the Finite Helical Axis
,”
Hum. Mov. Sci.
,
17
(
1
), pp.
1
15
.10.1016/S0167-9457(97)00018-3
27.
Markström
,
J. L.
,
Grip
,
H.
,
Schelin
,
L.
, and
Häger
,
C. K.
,
2020
, “
Individuals With an Anterior Cruciate Ligament–Reconstructed Knee Display Atypical Whole Body Movement Strategies but Normal Knee Robustness During Side-Hop Landings: A Finite Helical Axis Analysis
,”
Am. J. Sports Med.
,
48
(
5
), pp.
1117
1126
.10.1177/0363546520910428
28.
Temporiti
,
F.
,
Cescon
,
C.
,
Adamo
,
P.
,
Natali
,
F.
,
Barbero
,
M.
,
De Capitani
,
F.
, and
Gatti
,
R.
,
2020
, “
Dispersion of Knee Helical Axes During Walking in Young and Elderly Healthy Subjects
,”
J. Biomech.
,
109
, p.
109944
.10.1016/j.jbiomech.2020.109944
29.
Grip
,
H.
,
Tengman
,
E.
, and
Häger
,
C. K.
,
2015
, “
Dynamic Knee Stability Estimated by Finite Helical Axis Methods During Functional Performance Approximately Twenty Years After Anterior Cruciate Ligament Injury
,”
J. Biomech.
,
48
(
10
), pp.
1906
1914
.10.1016/j.jbiomech.2015.04.016
30.
Ehrig
,
R. M.
, and
Heller
,
M. O.
,
2019
, “
On Intrinsic Equivalences of the Finite Helical Axis, the Instantaneous Helical Axis, and the SARA Approach. A Mathematical Perspective
,”
J. Biomech.
,
84
, pp.
4
10
.10.1016/j.jbiomech.2018.12.034
31.
Ellingson
,
A. M.
, and
Nuckley
,
D. J.
,
2014
, “
Altered Helical Axis Patterns of the Lumbar Spine Indicate Increased Instability With Disc Degeneration
,”
J. Biomech.
,
48
(
2
), pp.
361
369
.10.1016/j.jbiomech.2014.11.010
32.
Rekow
,
E. D.
,
Hartfel
,
M.
,
Chin
,
M.
, and
Erdman
,
A. G.
,
1986
, “
The Tools of Biokinematics
,”
SOMA–Eng. Human Body
,
1
, pp.
30
36
.https://search.library.wisc.edu/catalog/999573740602121
33.
Sommer
,
H. J.
, and
Miller
,
N. R.
,
1980
, “
A Technique for Kinematic Modeling of Anatomical Joints
,”
ASME J. Biomech. Eng.
, 102(4), pp.
311
317
.10.1115/1.3138228
34.
Lawrence
,
R. L.
,
Ruder
,
M. C.
,
Zauel
,
R.
, and
Bey
,
M. J.
,
2020
, “
Instantaneous Helical Axis Estimation of Glenohumeral Kinematics: The Impact of Rotator Cuff Pathology
,”
J. Biomech.
,
26
(
109
), p.
109924
.10.1016/j.jbiomech.2020.109924
35.
Dianne
,
R.
,
2018
, “
Digital Dentistry – A Comprehensive Reference and Preview of the Future
,”
Quintessence Publishing
,
Angelwood Cliffs, NJ
.
36.
Li
,
P.
,
Erdman
,
A. G.
,
Raymond
,
J. B.
,
Hong
,
Z.
, and
Chen
,
C.
,
2007
, “
Scanning Apparatus
,” U.S. 20030020906A1, Apr. 24.
37.
Rekow
,
E. D.
,
Erdman
,
A. G.
,
Nappi
,
B.
,
Riley
,
D.
, and
Klamecki
,
B.
,
1994
, “
Design and Fabrication of a New Dental Restoration Manufacturing System
,” Paper No. 94-DE-3.
38.
Oura
,
M.
,
Menchaca
,
H.
,
Erdman
,
A. G.
, and
Buchwald
,
H.
,
2013
, “
Surgical Access System for Frugal Bariatric Surgery
,”
ASME J. Med. Dev.
,
7
(
2
), p. 020947.10.1115/1.4024792
39.
Juhnke
,
B.
,
2021
, “
Three-Perspective Multimethod Analysis of Medical Extended Reality Technology
,”
Ph.D. thesis
,
University of Minnesota
,
Minneapolis, MN
.https://hdl.handle.net/11299/225010
40.
Taborri
,
J.
,
Keogh
,
J.
,
Kos
,
A.
,
Santuz
,
A.
,
Umek
,
A.
,
Urbanczyk
,
C.
,
van der Kruk
,
E.
, and
Rossi
,
S.
,
2020
, “
Sport Biomechanics Applications Using Inertial, Force, and EMG Sensors: A Literature Overview
,”
Appl. Bionics Biomech.
,
2020
, pp.
1
18
.10.1155/2020/2041549
41.
Ortiz-Padilla
,
V. E.
,
Ramírez-Moreno
,
M. A.
,
Presbítero-Espinosa
,
G.
,
Ramírez-Mendoza
,
R. A.
, and
Lozoya-Santos
,
J.
,
2022
, “
Survey on Video-Based Biomechanics and Biometry Tools for Fracture and Injury Assessment in Sports
,”
Appl. Sci.
,
12
(
8
), p.
3981
.10.3390/app12083981
42.
Stenum
,
J.
,
Cherry-Allen
,
K. M.
,
Pyles
,
C. O.
,
Reetzke
,
R. D.
,
Vignos
,
M. F.
, and
Roemmich
,
R. T.
,
2021
, “
Applications of Pose Estimation in Human Health and Performance Across the Lifespan
,”
Sensors (Basel)
,
21
(
21
), p.
7315
.10.3390/s21217315
43.
Nakano
,
N.
,
Sakura
,
T.
,
Ueda
,
K.
,
Omura
,
L.
,
Kimura
,
A.
,
Iino
,
Y.
,
Fukashiro
,
S.
, and
Yoshioka
,
S.
,
2020
, “
Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras
,”
Front Sports Act Living
,
2
, p.
50
.10.3389/fspor.2020.00050
44.
Bird
,
M. B.
,
Mi
,
Q.
,
Koltun
,
K. J.
,
Lovalekar
,
M.
,
Martin
,
B. J.
,
Fain
,
A.
,
Bannister
,
A.
,
Vera Cruz
,
A.
,
Doyle
,
T. L. A.
, and
Nindl
,
B. C.
,
2022
, “
Unsupervised Clustering Techniques Identify Movement Strategies in the Countermovement Jump Associated With Musculoskeletal Injury Risk During US Marine Corps Officer Candidates School
,”
Front. Physiol.
,
13
, p.
868002
.10.3389/fphys.2022.868002
45.
Zago
,
M.
,
Kleiner
,
A. F. R.
, and
Federolf
,
P. A.
,
2021
, “
Editorial: Machine Learning Approaches to Human Movement Analysis
,”
Front. Bioeng. Biotechnol.
,
8
, p.
638793
.10.3389/fbioe.2020.638793
46.
Buesseler
,
R.
,
Erdman
,
A. G.
, and
Hom
,
D.
,
2009
, “
Novel Stapling Method and Device for Nasal Surgery
,”
ASME J. Med. Dev.
,
3
(
4
), pp.
1
6
.10.1115/1.4000496
47.
Freudenstein
,
F.
, and
Sandor
,
G. N.
,
1961
, “
On the Burmester Points of a Plane
,”
ASME J. Appl. Mech.
,
28
(
1
), pp.
41
49
.10.1115/1.3640465
48.
Werner
,
M.
,
2015
, “
Anatomy and Biomechanics of the Knee
,”
Sports Injuries
, 11(3), pp.
1
24
.10.1053/otsm.2003.35911
49.
Grood
,
E.
,
Hartfel
,
M.
,
Erdman
,
A. G.
, and
Kittur
,
M.
,
1984
, “
On the Use of Burmester Curves to Explain Attachment Points of the Collateral Ligaments
,”
Advances in Bioengineering
, 206(3), pp.
55
56
.https://experts.umn.edu/en/publications/on-the-useof-burmester-curves-to-explain-attachment-points-of-th
You do not currently have access to this content.