Abstract

Arterial stiffening occurs during natural aging, is associated with an increased risk of adverse cardiovascular events, and can follow different timelines in males and females. One mechanism of arterial stiffening includes remodeling of the extracellular matrix (ECM), which alters the wall material properties. We used elastin haploinsufficient (Eln+/−) and wildtype (Eln+/+) mice to investigate how material properties of two different arteries (ascending aorta and carotid artery) change with age, sex, and ECM composition. We used a constitutive model by Dong and Sun that is based on the Holzapfel–Gasser–Ogden (HGO) type, but does not require a discrete number of fibrous ECM families and allows varied deformation coupling. We find that the amount of deformation coupling for the best fit model depends on the artery type. We also find that remodeling to maintain homeostatic (i.e., young, wildtype) values of biomechanical parameters with age, sex, and ECM composition depends on the artery type, with ascending aorta being more adaptable than carotid artery. Fitted material constants indicate sex-dependent remodeling that may be important for determining the time course of arterial stiffening in males and females. We correlated fitted material constants with ECM composition measured by biochemical (ascending aorta) or histological (carotid artery) methods. We show significant correlations between ECM composition and material parameters for the mean values for each group, with biochemical measurements correlating more strongly than histological measurements. Understanding how arterial stiffening depends on age, sex, ECM composition, and artery type may help design effective, personalized clinical treatment strategies.

References

1.
Mitchell
,
G. F.
,
Hwang
,
S. J.
,
Vasan
,
R. S.
,
Larson
,
M. G.
,
Pencina
,
M. J.
,
Hamburg
,
N. M.
,
Vita
,
J. A.
,
Levy
,
D.
, and
Benjamin
,
E. J.
,
2010
, “
Arterial Stiffness and Cardiovascular Events: The Framingham Heart Study
,”
Circulation
,
121
(
4
), pp.
505
511
.10.1161/CIRCULATIONAHA.109.886655
2.
Ogola
,
B. O.
,
Zimmerman
,
M. A.
,
Clark
,
G. L.
,
Abshire
,
C. M.
,
Gentry
,
K. M.
,
Miller
,
K. S.
, and
Lindsey
,
S. H.
,
2018
, “
New Insights Into Arterial Stiffening: Does Sex Matter?
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
315
(
5
), pp.
H1073
H1087
.10.1152/ajpheart.00132.2018
3.
Wagenseil
,
J. E.
, and
Mecham
,
R. P.
,
2012
, “
Elastin in Large Artery Stiffness and Hypertension
,”
J. Cardiovasc. Transl. Res.
,
5
(
3
), pp.
264
273
.10.1007/s12265-012-9349-8
4.
Greenwald
,
S. E.
,
2007
, “
Ageing of the Conduit Arteries
,”
J. Pathology
,
211
(
2
), pp.
157
172
.10.1002/path.2101
5.
Faury
,
G.
,
Pezet
,
M.
,
Knutsen
,
R. H.
,
Boyle
,
W. A.
,
Heximer
,
S. P.
,
McLean
,
S. E.
,
Minkes
,
R. K.
,
Blumer
,
K. J.
,
Kovacs
,
A.
,
Kelly
,
D. P.
,
Li
,
D. Y.
,
Starcher
,
B.
, and
Mecham
,
R. P.
,
2003
, “
Developmental Adaptation of the Mouse Cardiovascular System to Elastin Haploinsufficiency
,”
J. Clin. Invest.
,
112
(
9
), pp.
1419
1428
.10.1172/JCI19028
6.
Cheng
,
J. K.
,
Stoilov
,
I.
,
Mecham
,
R. P.
, and
Wagenseil
,
J. E.
,
2013
, “
A Fiber-Based Constitutive Model Predicts Changes in Amount and Organization of Matrix Proteins With Development and Disease in the Mouse Aorta
,”
Biomech. Model. Mechanobiol.
,
12
(
3
), pp.
497
510
.10.1007/s10237-012-0420-9
7.
Pezet
,
M.
,
Jacob
,
M. P.
,
Escoubet
,
B.
,
Gheduzzi
,
D.
,
Tillet
,
E.
,
Perret
,
P.
,
Huber
,
P.
,
Quaglino
,
D.
,
Vranckx
,
R.
,
Li
,
D. Y.
,
Starcher
,
B.
,
Boyle
,
W. A.
,
Mecham
,
R. P.
, and
Faury
,
G.
,
2008
, “
Elastin Haploinsufficiency Induces Alternative Aging Processes in the Aorta
,”
Rejuvenation Res.
,
11
(
1
), pp.
97
112
.10.1089/rej.2007.0587
8.
Hawes
,
J. Z.
,
Cocciolone
,
A.
,
Cui
,
A. H.
,
Griffin
,
D. B.
,
Staiculescu
,
M. C.
,
Mecham
,
R. P.
, and
Wagenseil
,
J. E.
,
2020
, “
Elastin Haploinsufficiency in Mice Has Divergent Effects on Arterial Remodeling With Aging Depending on Sex
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
319
(
6
), pp.
H1398
H1408
.10.1152/ajpheart.00517.2020
9.
Holzapfel
,
G. A.
,
Gasser
,
T. C.
, and
Ogden
,
R. W.
,
2000
, “
A New Constitutive Framework for Arterial Wall Mechanics and a Comparative Study of Material Models
,”
J. Elasticity
,
61
(
1/3
), pp.
1
48
.10.1023/A:1010835316564
10.
Ferruzzi
,
J.
,
Bersi
,
M. R.
, and
Humphrey
,
J. D.
,
2013
, “
Biomechanical Phenotyping of Central Arteries in Health and Disease: Advantages of and Methods for Murine Models
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1311
1330
.10.1007/s10439-013-0799-1
11.
Bellini
,
C.
,
Bersi
,
M. R.
,
Caulk
,
A. W.
,
Ferruzzi
,
J.
,
Milewicz
,
D. M.
,
Ramirez
,
F.
,
Rifkin
,
D. B.
,
Tellides
,
G.
,
Yanagisawa
,
H.
, and
Humphrey
,
J. D.
,
2017
, “
Comparison of 10 Murine Models Reveals a Distinct Biomechanical Phenotype in Thoracic Aortic Aneurysms
,”
J. R. Soc. Interface
,
14
(
130
), p.
20161036
.10.1098/rsif.2016.1036
12.
Dong
,
H.
, and
Sun
,
W.
,
2021
, “
A Novel Hyperelastic Model for Biological Tissues With Planar Distributed Fibers and a Second Kind of Poisson Effect
,”
J. Mech. Phys. Solids
,
151
, p.
104377
.10.1016/j.jmps.2021.104377
13.
Dong
,
H.
,
Liu
,
M.
,
Woodall
,
J.
,
Leshnower
,
B. G.
, and
Gleason
,
R. L.
, Jr.
,
2023
, “
Effect of Nonlinear Hyperelastic Property of Arterial Tissues on the Pulse Wave Velocity Based on the Unified-Fiber-Distribution (UFD) Model
,”
Ann. Biomed. Eng.
, epub.10.1007/s10439-023-03275-1
14.
Li
,
D. Y.
,
Faury
,
G.
,
Taylor
,
D. G.
,
Davis
,
E. C.
,
Boyle
,
W. A.
,
Mecham
,
R. P.
,
Stenzel
,
P.
,
Boak
,
B.
, and
Keating
,
M. T.
,
1998
, “
Novel Arterial Pathology in Mice and Humans Hemizygous for Elastin
,”
J. Clin. Invest.
,
102
(
10
), pp.
1783
1787
.10.1172/JCI4487
15.
Amin
,
M.
,
Kunkel
,
A. G.
,
Le
,
V. P.
, and
Wagenseil
,
J. E.
,
2011
, “
Effect of Storage Duration on the Mechanical Behavior of Mouse Carotid Artery
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071007
.10.1115/1.4004415
16.
Bersi
,
M. R.
,
Collins
,
M. J.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2012
, “
Disparate Changes in the Mechanical Properties of Murine Carotid Arteries and Aorta in Response to Chronic Infusion of Angiotensin-II
,”
Int. J. Adv. Eng. Sci. Appl. Math.
,
4
(
4
), pp.
228
240
.10.1007/s12572-012-0052-4
17.
Starcher
,
B.
,
2001
, “
A Ninhydrin-Based Assay to Quantitate the Total Protein Content of Tissue Samples
,”
Anal. Biochem.
,
292
(
1
), pp.
125
129
.10.1006/abio.2001.5050
18.
Stoilov
,
I.
,
Starcher
,
B. C.
,
Mecham
,
R. P.
, and
Broekelmann
,
T. J.
,
2018
, “
Measurement of Elastin, Collagen, and Total Protein Levels in Tissues
,”
Methods Cell Biol.
,
143
, pp.
133
146
.10.1016/bs.mcb.2017.08.008
19.
Jamall
,
I. S.
,
Finelli
,
V. N.
, and
Que Hee
,
S. S.
,
1981
, “
A Simple Method to Determine Nanogram Levels of 4-Hydroxyproline in Biological Tissues
,”
Anal. Biochem.
,
112
(
1
), pp.
70
75
.10.1016/0003-2697(81)90261-X
20.
Gasser
,
T. C.
,
Ogden
,
R. W.
, and
Holzapfel
,
G. A.
,
2006
, “
Hyperelastic Modelling of Arterial Layers With Distributed Collagen Fibre Orientations
,”
J. R. Soc. Interface
,
3
(
6
), pp.
15
35
.10.1098/rsif.2005.0073
21.
Baek
,
S.
,
Gleason
,
R. L.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2007
, “
Theory of Small on Large: Potential Utility in Computations of Fluid-Solid Interactions in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
31–32
), pp.
3070
3078
.10.1016/j.cma.2006.06.018
22.
Bersi
,
M. R.
,
Ferruzzi
,
J.
,
Eberth
,
J. F.
,
Gleason
,
R. L.
, Jr.
, and
Humphrey
,
J. D.
,
2014
, “
Consistent Biomechanical Phenotyping of Common Carotid Arteries From Seven Genetic, Pharmacological, and Surgical Mouse Models
,”
Ann. Biomed. Eng.
,
42
(
6
), pp.
1207
1223
.10.1007/s10439-014-0988-6
23.
Kim
,
J.
,
Cocciolone
,
A. J.
,
Staiculescu
,
M. C.
,
Mecham
,
R. P.
, and
Wagenseil
,
J. E.
,
2022
, “
Passive Biaxial Mechanical Behavior of Newborn Mouse Aorta With and Without Elastin
,”
J. Mech. Behav. Biomed. Mater.
,
126
, p.
105021
.10.1016/j.jmbbm.2021.105021
24.
Schlatmann
,
T. J.
, and
Becker
,
A. E.
,
1977
, “
Histologic Changes in the Normal Aging Aorta: Implications for Dissecting Aortic Aneurysm
,”
Am. J. Cardiol.
,
39
(
1
), pp.
13
20
.10.1016/S0002-9149(77)80004-0
25.
Greenberg
,
S. R.
,
1986
, “
The Association of Medial Collagenous Tissue With Atheroma Formation in the Aging Human Aorta as Revealed by a Special Technique
,”
Histol. Histopathol.
,
1
(
4
), pp.
323
326
.https://pubmed.ncbi.nlm.nih.gov/2980126/
26.
Fleenor
,
B. S.
,
Marshall
,
K. D.
,
Durrant
,
J. R.
,
Lesniewski
,
L. A.
, and
Seals
,
D. R.
,
2010
, “
Arterial Stiffening With Ageing is Associated With Transforming Growth Factor-beta1-Related Changes in Adventitial Collagen: Reversal by Aerobic Exercise
,”
J. Physiol.
,
588
(
20
), pp.
3971
3982
.10.1113/jphysiol.2010.194753
27.
Schleicher
,
E. D.
,
Wagner
,
E.
, and
Nerlich
,
A. G.
,
1997
, “
Increased Accumulation of the Glycoxidation Product N(Epsilon)-(Carboxymethyl)Lysine in Human Tissues in Diabetes and Aging
,”
J. Clin. Invest.
,
99
(
3
), pp.
457
468
.10.1172/JCI119180
28.
Wan
,
W.
,
Yanagisawa
,
H.
, and
Gleason
,
R. L.
, Jr.
,
2010
, “
Biomechanical and Microstructural Properties of Common Carotid Arteries From Fibulin-5 Null Mice
,”
Ann. Biomed. Eng.
,
38
(
12
), pp.
3605
3617
.10.1007/s10439-010-0114-3
29.
Chow
,
M. J.
,
Turcotte
,
R.
,
Lin
,
C. P.
, and
Zhang
,
Y.
,
2014
, “
Arterial Extracellular Matrix: A Mechanobiological Study of the Contributions and Interactions of Elastin and Collagen
,”
Biophys. J.
,
106
(
12
), pp.
2684
2692
.10.1016/j.bpj.2014.05.014
30.
Wagenseil
,
J. E.
,
Nerurkar
,
N. L.
,
Knutsen
,
R. H.
,
Okamoto
,
R. J.
,
Li
,
D. Y.
, and
Mecham
,
R. P.
,
2005
, “
Effects of Elastin Haploinsufficiency on the Mechanical Behavior of Mouse Arteries
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
289
(
3
), pp.
H1209
H1217
.10.1152/ajpheart.00046.2005
31.
Brankovic
,
S.
,
Hawthorne
,
E. A.
,
Yu
,
X.
,
Zhang
,
Y.
, and
Assoian
,
R. K.
,
2019
, “
MMP12 Preferentially Attenuates Axial Stiffening of Aging Arteries
,”
ASME J. Biomech. Eng.
,
141
(
8
), p. 081004.10.1115/1.4043322
32.
Ferruzzi
,
J.
,
Madziva
,
D.
,
Caulk
,
A. W.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2018
, “
Compromised Mechanical Homeostasis in Arterial Aging and Associated Cardiovascular Consequences
,”
Biomech. Model. Mechanobiol.
,
17
(
5
), pp.
1281
1295
.10.1007/s10237-018-1026-7
33.
Humphrey
,
J. D.
,
Eberth
,
J. F.
,
Dye
,
W. W.
, and
Gleason
,
R. L.
,
2009
, “
Fundamental Role of Axial Stress in Compensatory Adaptations by Arteries
,”
J. Biomech.
,
42
(
1
), pp.
1
8
.10.1016/j.jbiomech.2008.11.011
34.
Jackson
,
Z. S.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
2002
, “
Wall Tissue Remodeling Regulates Longitudinal Tension in Arteries
,”
Circ. Res.
,
90
(
8
), pp.
918
925
.10.1161/01.RES.0000016481.87703.CC
35.
Jackson
,
Z. S.
,
Dajnowiec
,
D.
,
Gotlieb
,
A. I.
, and
Langille
,
B. L.
,
2005
, “
Partial Off-Loading of Longitudinal Tension Induces Arterial Tortuosity
,”
Arterioscler., Thromb., Vasc. Biol.
,
25
(
5
), pp.
957
962
.10.1161/01.ATV.0000161277.46464.11
36.
Lawrence
,
A. R.
, and
Gooch
,
K. J.
,
2009
, “
Transmural Pressure and Axial Loading Interactively Regulate Arterial Remodeling Ex Vivo
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
297
(
1
), pp.
H475
H484
.10.1152/ajpheart.00972.2008
37.
Cocciolone
,
A. J.
,
Hawes
,
J. Z.
,
Staiculescu
,
M. C.
,
Johnson
,
E. O.
,
Murshed
,
M.
, and
Wagenseil
,
J. E.
,
2018
, “
Elastin, Arterial Mechanics, and Cardiovascular Disease
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
315
(
2
), pp.
H189
H205
.10.1152/ajpheart.00087.2018
38.
Bersi
,
M. R.
,
Khosravi
,
R.
,
Wujciak
,
A. J.
,
Harrison
,
D. G.
, and
Humphrey
,
J. D.
,
2017
, “
Differential Cell-Matrix Mechanoadaptations and Inflammation Drive Regional Propensities to Aortic Fibrosis, Aneurysm or Dissection in Hypertension
,”
J. R. Soc. Interface
,
14
(
136
), p.
20170327
.10.1098/rsif.2017.0327
You do not currently have access to this content.