Abstract

The interlamellar matrix (ILM), located between the annular layers of the intervertebral disc (IVD), is an adhesive component which acts to resist delamination. Investigating the mechanical properties of the ILM can provide us with valuable information regarding risk of disc injury; however given its viscoelastic nature, it may be necessary to conduct preconditioning on tissue samples before measuring these ILM properties. Therefore, the aim of this study was to optimize mechanical testing protocols of the ILM by examining the effect of preconditioning on stiffness and strength of this adhesive matrix. Eighty-eight annular samples were dissected from 22 porcine cervical discs and randomized into one of four testing conditions consisting of ten cycles of 15% strain followed by a 180 deg adhesive peel test. The four testing groups employed a different strain rate for the ten cycles of preconditioning: 0.01 mm/s (n = 23); 0.1 mm/s (n = 26); 1 mm/s (n = 23); and no preconditioning employed (n = 16). Samples preconditioned at 0.01 mm/s were significantly less stiff than those that had not received preconditioning (p = 0.014). No other results were found to be statistically significant. Given the lack of differences observed in this study, preconditioning is likely not necessary prior to conducting a 180 deg peel test. However, if preconditioning is employed, the findings from this study suggest avoiding preconditioning conducted at very slow rates (i.e., 0.01 mm/s) as the long testing time may negatively affect the tissue.

References

1.
Zheng
,
C. J.
, and
Chen
,
J.
,
2015
, “
Disc Degeneration Implies Low Back Pain
,”
Theor. Biol. Med. Modell.
,
12
(
1
), p.
24
.10.1186/s12976-015-0020-3
2.
Gregory
,
D. E.
,
Veldhuis
,
J. H.
,
Horst
,
C.
,
Brodland
,
G. W.
, and
Callaghan
,
J. P.
,
2011
, “
Novel Lap Test Determines the Mechanics of Delamination Between Annular Lamellae of the Intervertebral Disc
,”
J. Biomech.
,
44
(
1
), pp.
97
102
.10.1016/j.jbiomech.2010.08.031
3.
Tavakoli
,
J.
, and
Costi
,
J. J.
,
2018
, “
New Findings Confirm the Viscoelastic Behaviour of the Inter-Lamellar Matrix of the Disc Annulus Fibrosus in Radial and Circumferential Directions of Loading
,”
Acta Biomater.
,
71
, pp.
411
419
.10.1016/j.actbio.2018.03.015
4.
Tavakoli
,
J.
,
Amin
,
D. B.
,
Freeman
,
B.
, and
Costi
,
J. J.
,
2018
, “
The Biomechanics of the Inter-Lamellar Matrix and the Lamellae During Progression to Lumbar Disc Herniation: Which Is the Weakest Structure?
,”
Ann. Biomed. Eng.
,
46
(
9
), pp.
1280
1291
.10.1007/s10439-018-2056-0
5.
Smith
,
L. J.
,
Byers
,
S.
,
Costi
,
J. J.
, and
Fazzalari
,
N. L.
,
2008
, “
Elastic Fibers Enhance the Mechanical Integrity of the Human Lumbar Anulus Fibrosus in the Radial Direction
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
214
223
.10.1007/s10439-007-9421-8
6.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus Are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.10.1002/jor.1100150605
7.
Harvey-Burgess
,
M.
, and
Gregory
,
D. E.
,
2019
, “
The Effect of Axial Torsion on the Mechanical Properties of the Annulus Fibrosus
,”
Spine
,
44
(
4
), pp.
E195
E201
.10.1097/BRS.0000000000002803
8.
Briar
,
K. J.
, and
Gregory
,
D. E.
,
2023
, “
Combined Flexion and Compression Negatively Impact the Mechanical Integrity of the Annulus Fibrosus
,”
Eur. Spine J.
,
32
(
3
), pp.
831
838
.10.1007/s00586-022-07518-y
9.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2014
, “
Disc Degeneration Reduces the Delamination Strength of the Annulus Fibrosus in the Rabbit Annular Disc Puncture Model
,”
Spine J.
,
14
(
7
), pp.
1265
1271
.10.1016/j.spinee.2013.07.489
10.
McMorran
,
J. G.
, and
Gregory
,
D. E.
,
2021
, “
The Effect of Compressive Loading Rate on Annulus Fibrosus Strength Following Endplate Fracture
,”
Med. Eng. Phys.
,
93
, pp.
17
26
.10.1016/j.medengphy.2021.05.010
11.
Ghelani
,
R. N.
,
Zwambag
,
D. P.
, and
Gregory
,
D. E.
,
2020
, “
Rapid Increase in Intradiscal Pressure in Porcine Cervical Spine Units Negatively Impacts Annulus Fibrosus Strength
,”
J. Biomech.
,
108
, p.
109888
.10.1016/j.jbiomech.2020.109888
12.
Snow
,
C. R.
,
Harvey-Burgess
,
M.
,
Laird
,
B.
,
Brown
,
S. H. M.
, and
Gregory
,
D. E.
,
2018
, “
Pressure-Induced End-Plate Fracture in the Porcine Spine: Is the Annulus Fibrosus Susceptible to Damage?
,”
Eur. Spine J.
,
27
(
8
), pp.
1767
1774
.10.1007/s00586-017-5428-5
13.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
, 2nd ed.,
Springer Science+Business Media
,
New York
.
14.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2012
, “
Anular Delamination Strength of Human Lumbar Intervertebral Disc
,”
Eur. Spine J.
,
21
(
9
), pp.
1716
1723
.10.1007/s00586-012-2308-x
15.
Gsell
,
K. Y.
,
Zwambag
,
D. P.
,
Fournier
,
D. E.
,
Séguin
,
C. A.
, and
Brown
,
S. H. M.
,
2017
, “
Paraspinal Muscle Passive Stiffness Remodels in Direct Response to Spine Stiffness: A Study Using the ENT1-Deficient Mouse
,”
Spine
,
42
(
19
), pp.
1440
1446
.10.1097/BRS.0000000000002132
16.
Melrose
,
J.
,
Smith
,
S. M.
,
Appleyard
,
R. C.
, and
Little
,
C. B.
,
2008
, “
Aggrecan, Versican and Type VI Collagen Are Components of Annular Translamellar Crossbridges in the Intervertebral Disc
,”
Eur. Spine J.
,
17
(
2
), pp.
314
324
.10.1007/s00586-007-0538-0
17.
Yu
,
J.
,
Schollum
,
M. L.
,
Wade
,
K. R.
,
Broom
,
N. D.
, and
Urban
,
J. P. G.
,
2015
, “
ISSLS Prize Winner: A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organization
,”
Spine
,
40
(
15
), pp.
1149
1157
.10.1097/BRS.0000000000000943
18.
Yingling
,
V. R.
,
Callaghan
,
J. P.
, and
McGill
,
S. M.
,
1999
, “
The Porcine Cervical Spine as a Model of the Human Lumbar Spine: An Anatomical, Geometric, and Functional Comparison
,”
J. Spinal Disord.
,
12
(
5
), pp.
415
423
.10.1097/00002517-199912050-00012
You do not currently have access to this content.