Abstract

We present computational fluid dynamic (CFD) simulation of aggregation of two deformable cells in a shear flow. This work is motivated by an attempt to develop computational models of aggregation of red blood cells (RBCs). Aggregation of RBCs is a major determinant of blood viscosity in microcirculation under physiological and pathological conditions. Deformability of the RBCs plays a major role in determining their aggregability. Deformability depends on the viscosity of the cytoplasmic fluid and on the rigidity of the cell membrane, in a macroscopic sense. This paper presents a computational study of RBC aggregation that takes into account the rheology of the cells as well as cell-cell adhesion kinetics. The simulation technique considered here is two dimensional and based on the front tracking/immersed boundary method for multiple fluids. Results presented here are on the dynamic events of aggregate formation between two cells, and its subsequent motion, rolling, deformation, and breakage. We show that the rheological properties of the cells have significant effects on the dynamics of the aggregate. A stable aggregate is formed at higher cytoplasmic viscosity and membrane rigidity. We also show that the bonds formed between the cells change in a cyclic manner as the aggregate rolls in a shear flow. The cyclic behavior is related to the rolling orientation of the aggregate. The frequency and amplitude of oscillation in the number of bonds also depend on the rheological properties.

References

1.
Rampling
,
M. W.
,
Meiselman
,
H. J.
,
Neu
,
B.
,
Baskurt
,
O. K.
, 2004, “
Influence of Cell Specific Factors on Red Blood Cell Aggregation
,”
Biorheology
0006-355X
41
, pp
91
112
.
2.
Ami
,
B.
,
Barshtein
,
G.
,
Zeltser
,
D.
,
Goldberg
,
Y.
,
Shapira
,
I.
,
Roth
,
A.
,
Keren
,
G.
,
Miller
,
H.
,
Yedgar
,
S.
, 2001, “
Parameters of Red Blood Cell Aggregation as Correlates of the Inflammatory state
,”
Am. J. Physiol.
0002-9513,
280
, pp.
H1982
H1988
.
3.
Chien
,
S.
and
Jan
,
K.-M.
, 1973, “
Ultrastructural Basis of the Mechanism of Rouleaux Formation
,”
Microvasc. Res.
0026-2862
5
, pp.
155
166
.
4.
Neu
B.
, and
Meiselman
H. J.
2002, “
Depletion-Mediated Red Blood Cell Aggregation in Polymer Solutions
,”
Biophys. J.
0006-3495,
83
, pp.
2482
2490
.
5.
Popel
,
A. S.
and
Johnson
,
P. C.
, 2005, “
Microcirculation and Hemorheology
,”
Annu. Rev. Fluid Mech.
0066-4189
37
, pp.
43
69
.
6.
Skalak
,
R.
,
Zarda
,
P. R.
,
Jan
,
K.-M.
, and
Chien
,
S.
, 1981, “
Mechanics of Rouleau Formation
,”
Biophys. J.
0006-3495,
35
, pp
771
781
.
7.
Evans
,
E. A.
, 1985, “
Detailed Mechanics of Membrane-Membrane Adhesion and Separation
.”
Biophys. J.
0006-3495
48
, pp
175
183
.
8.
Murata
,
T.
, and
Secomb
,
T. W.
, 1988, “
Effects of Shear Rate on Rouleau Formation in Simple Shear Flow
,”
Biorheology
0006-355X,
25
, pp.
113
122
.
9.
Chen
,
J.
, and
Huang
,
Z.
, 1996, “
Analytical Model for Effects of Shear Rate on Rouleau Size and Blood Viscosity
,”
Biophys. Chem.
0301-4622
96
, pp.
273
279
.
10.
Lim
,
B.
,
Bascom
,
P. A. J.
, and
Cobbold
,
R. S. C.
, 1997, “
Simulation of Red Blood Cell Aggregation in Shear Flow
,”
Biorheology
0006-355X,
34
, pp.
423
441
.
11.
Goldsmith
,
H. L.
, and
Karino
,
T.
, 1980,“Physical and Mathematical Models of Blood Flow: Experimental Studies,"
Erythrocyte Mechanics and Blood Flow
,
Cokelet
,
G. R.
,
Meiselman
,
H. J.
, and
Brooks
,
D. E.
, eds., John Willey & Sons.
12.
Bishop
,
J. J.
,
Nance
,
P.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
, 2001a, “
Effect of Erythrocyte Aggregation on Velocity Profiles in Venules
,”
Am. J. Physiol.
0002-9513
280
, pp.
H222
H236
.
13.
Bishop
,
J. J.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
, 2001b, “
Effects of Erythrocyte Aggregation and Venous Network Geometry on Red Blood Cell Axial Migration
,”
Am. J. Physiol.
0002-9513
281
, pp.
H939
H950
.
14.
Bishop
,
J. J.
,
Nance
,
P.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
, 2001c, “
Erythrocyte Margination and Sedimentation in Skeletal Muscle Venules
,”
Am. J. Physiol.
0002-9513
281
, pp.
H951
H958
.
15.
Bishop
,
J. J.
,
Popel
,
A. S.
,
Intaglietta
,
M.
, and
Johnson
,
P. C.
, 2002, “
Effect of Aggregation and Shear Rate on the Dispersion of Red Blood Cells Flowing in Venules
,”
Am. J. Physiol.
0002-9513
283
, pp.
H1985
H1996
.
16.
Peskin
,
C. S.
1977, “
Numerical Analysis of Blood Flow in the Heart
,”
J. Comput. Phys.
0021-9991,
25
, pp.
220
233
.
17.
Unverdi
,
S. O.
and
Tryggvason
,
G.
1992, “
A Front-Tracking Method for Viscous Incompressible Multi-Fluid Flows
,”
J. Comput. Phys.
0021-9991
100
, pp.
25
37
.
18.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan.
,
Y.-J.
, 2001, “
A Front Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
0021-9991
169
, pp
708
759
.
19.
Bagchi
,
P.
, and
Balachandar
,
S.
, 2002, “
Steady Planar Straining Flow Past a Rigid Sphere at Moderate Reynolds Number
,”
J. Fluid Mech.
0022-1120,
466
, pp.
365
407
.
20.
Skalak
,
R.
,
Tozeren
,
A.
,
Zarda
,
P. R.
, and
Chien
,
S.
, 1973, “
Strain Energy Function of Red Blood Cell Membranes
,”
Biophys. J.
0006-3495,
13
, pp.
245
264
.
21.
Evans
,
E. A.
, and
Skalak
,
R.
1980,
Mechanics and Thermodynamics of Biomembranes
,
CRC Press
, Boca Raton, FL.
22.
Barthes-Biesel
,
D.
,
Diaz
,
A.
, and
Dhenin
,
E.
, 2002, “
Effect of Constitutive Laws for Two-dimensional Membranes on Flow-induced Capsule Deformation
,”
J. Fluid Mech.
0022-1120,
460
, pp.
211
222
.
23.
N’Dri
,
N. A.
,
Shyy
,
W.
, and
Tran-Son-Tay
,
R.
, 2003, “
Computational Modeling of Cell Adhesion and Movement Using a Continuum-Kinetics Approach
,”
Biophys. J.
0006-3495,
85
, pp.
2273
2286
.
24.
Zhu
,
C.
, 1991, “
A Thermodynamic and Biomechanical Theory of Cell Adhesion. Part 1: General Formulism
,”
J. Theor. Biol.
0022-5193
150
, pp
27
50
.
25.
Swenson
,
J.
,
Smalley
,
M. V.
, and
Hatharasinghe
,
H. L. M.
, 1998, “
Mechanism and Strength of Polymer Bridging Flocculation
,”
Phys. Rev. Lett.
0031-9007,
81
, pp
5840
5843
.
26.
Brooks
,
D. E.
, 1973, “
The Effect of Neutral Polymers on the Electrokinetic Potential of Cells and other Charged Particles. III: Experimental Studies on the Dextran/Erythrocyte System
,”
J. Colloid Interface Sci.
0021-9797,
43
, pp.
701
713
.
27.
Barshtein
,
G.
,
Tamir
,
H.
, and
Yedgar
,
S.
, 1998, “
Red Blood Cell Rouleaux Formation in Dextran Solution: Dependence on Polymer Conformation
,”
Eur. Biophys. J.
0175-7571,
27
, pp.
177
181
.
28.
Skalak
,
R.
, and
Zhu
,
C.
, 1990, “
Rheological Aspects of Red Blood Cell Aggregation
,”
Biorheology
0006-355X,
27
, pp
309
325
.
29.
Pozrikidis
,
C.
, 1995, “
Finite Deformation of Liquid Capsules Enclosed by Elastic Membranes in Simple Shear Flow
,”
J. Fluid Mech.
0022-1120,
297
, pp.
123
152
.
30.
Ramanujan
,
S.
, and
Pozrikidis
,
C.
, 1998, “
Deformation of Liquid Capsules Enclosed by Elastic Membranes in Simple Shear Flow: Large Deformations and the Effect of Fluid Viscosities
,”
J. Fluid Mech.
0022-1120
361
, pp.
117
143
.
31.
Eggleton
,
C. D.
, and
Popel
,
A. S.
, 1998, “
Large Deformation of Red Blood Cell Ghosts in a Simple Shear Flow
,”
Phys. Fluids
1070-6631
10
, pp.
1834
1845
.
32.
Derganc
,
J.
,
Bozic
,
B.
,
Svetina
,
S.
, and
Zeks
,
B.
, 2003, “
Equilibrium Shapes of Erythrocytes in Rouleau Formation
.”
Biophys. J.
0006-3495,
84
, pp.
1486
1492
.;
Tornberg
,
A.-K.
, and
Shelley
,
M.
, 2004, “
Simulating the Dynamics and Interactions of Flexible Fibers in Stokes Flows
,”
J. Comput. Phys.
0021-9991,
196
, pp.
8
40
.
33.
Skalak
,
R.
, and
Chien
,
S.
, 1983, “
Theoretical Models of Rouleau Formation and Disaggregation
,”
Ann. N.Y. Acad. Sci.
0077-8923,
416
, pp.
138
148
.
34.
Pozrikidis
,
C.
, 2003a, “Membrane Theory for Capsules and Cells," in
Modeling and Simulation of Capsules and Biological Cells
, edited by
C.
Pozrikidis
,
Chapman and Hall/CRC Press Mathematical Biology and Medicine Series
. Boca Raton, Florida.
35.
Pozrikidis
,
C.
, 2003b, “
Deformed Shapes of Axisymmetric Capsules Enclosed by Elastic Membranes
,”
J. Eng. Math.
0022-0833,
45
, pp.
169
182
.
36.
Chien
,
S.
,
Sung
,
L. A.
,
Sinchon
,
S.
,
Lee
,
M. M. L.
, and
Skalak
,
R.
, 1984,“
Energy Balance in Red Cell Interactions
.”
Ann. N.Y. Acad. Sci.
0077-8923
416
, pp.
138
148
.
37.
Jeffery
,
G. B.
1922, “
The Motion of Ellipsoidal Particles Immersed in a Viscous Fluid
,”
Proc. R. Soc. London, Ser. A
1364-5021,
102
,
161
170
.
38.
Evans
,
E. A.
, and
Hochmuth
,
R. M.
, 1976, “
Membrane Viscoelasticity
,”
Biophys. J.
0006-3495,
16
, pp
1
11
.
39.
Barthes-Biesel
,
D.
, 1991, “
Role of Interfacial Properties on the Motion and Deformation of Capsules in Shear Flow
,”
Physica A
0378-4371,
172
, pp.
103
124
.
40.
Barthes-Biesel
,
D.
, and
Sgaier
,
H.
, 1985, “
Role of Membrane Viscosity in the Orientation and Deformation of a Spherical Capsule Suspended in Shear Flow
,”
J. Fluid Mech.
0022-1120,
160
,
119
136
.
41.
Pozrikidis
,
C.
, 2001, “
Effect of Membrane Bending Stiffness on the Deformation of Capsules in Simple Shear Flow
,”
J. Fluid Mech.
0022-1120,
440
, pp.
269
291
.
You do not currently have access to this content.