Skip Nav Destination
Issues
November 1991
ISSN 0148-0731
EISSN 1528-8951
In this Issue
Research Papers
Fracture Prediction for the Proximal Femur Using Finite Element Models: Part I—Linear Analysis
J Biomech Eng. November 1991, 113(4): 353–360.
doi: https://doi.org/10.1115/1.2895412
Topics:
Finite element model
,
Fracture (Materials)
,
Fracture (Process)
,
Stress
,
Risk
,
Failure
,
Hip fractures
,
Materials properties
,
Strain gages
,
Bone
Fracture Prediction for the Proximal Femur Using Finite Element Models: Part II—Nonlinear Analysis
J Biomech Eng. November 1991, 113(4): 361–365.
doi: https://doi.org/10.1115/1.2895413
Topics:
Finite element model
,
Fracture (Materials)
,
Fracture (Process)
,
Bone
,
Failure
,
Stress
,
Bone fractures
,
Computerized tomography
,
Concretes
,
Shells
Prediction of Femoral Impact Forces in Falls on the Hip
J Biomech Eng. November 1991, 113(4): 366–374.
doi: https://doi.org/10.1115/1.2895414
Topics:
Damping
,
Femoral fractures
,
Fracture (Materials)
,
Fracture (Process)
,
Hip fractures
,
Risk
,
Soft tissues
,
Stiffness
An Experimental Method for Measuring Force on the Spinal Facet Joint: Description and Application of the Method
J Biomech Eng. November 1991, 113(4): 375–386.
doi: https://doi.org/10.1115/1.2895415
Topics:
Calibration
,
Cantilever beams
,
Compression
,
Errors
,
Force measurement
,
Gages
,
Geometry
,
Lumbar spine
,
Strain gages
,
Stress
Nonlinear Dynamic Behavior of the Human Knee Joint—Part I: Postmortem Frequency Domain Analyses
J Biomech Eng. November 1991, 113(4): 387–391.
doi: https://doi.org/10.1115/1.2895416
Nonlinear Dynamic Behavior of the Human Knee Joint—Part II: Time-Domain Analyses: Effects of Structural Damage in Postmortem Experiments
J Biomech Eng. November 1991, 113(4): 392–396.
doi: https://doi.org/10.1115/1.2895417
Topics:
Damage
,
Knee
,
Time-domain analysis
,
Computer simulation
,
Damping
,
Excitation
,
Stiffness
,
Stress
,
Vibration
Application of the u-p Finite Element Method to the Study of Articular Cartilage
J Biomech Eng. November 1991, 113(4): 397–403.
doi: https://doi.org/10.1115/1.2895418
Topics:
Cartilage
,
Finite element methods
,
Compression
,
Biological tissues
,
Maintenance
,
Algorithms
,
Computers
,
Deformation
,
Finite element analysis
,
Fluid pressure
Stiffness of Canine Stifle Joint Ligaments at Relatively High Rates of Elongation
J Biomech Eng. November 1991, 113(4): 404–409.
doi: https://doi.org/10.1115/1.2895419
Topics:
Elongation
,
Stiffness
,
Transducers
,
Displacement
,
Oscilloscopes
,
Storage
,
Weight (Mass)
Normal Contact of Elastic Spheres With Two Elastic Layers as a Model of Joint Articulation
J Biomech Eng. November 1991, 113(4): 410–417.
doi: https://doi.org/10.1115/1.2895420
Topics:
Bone
,
Cartilage
,
Compressive stress
,
Cracking (Materials)
,
Fracture (Materials)
,
Fracture (Process)
,
Osteoarthritis
,
Shear stress
,
Stiffness
,
Stress
Thermographic Stress Analysis in Cortical Bone
J Biomech Eng. November 1991, 113(4): 418–422.
doi: https://doi.org/10.1115/1.2895421
Topics:
Bone
,
Stress analysis (Engineering)
,
Heat flux
,
Temperature
,
Stress
,
Biomechanics
,
Density
,
Strain gages
,
Thermoelasticity
Thermal Property Measurements on Biological Materials at Subzero Temperatures
J Biomech Eng. November 1991, 113(4): 423–429.
doi: https://doi.org/10.1115/1.2895422
Topics:
Temperature
,
Thermal properties
,
Thermal conductivity
,
Convection
,
Kidney
,
Biomaterials
,
Low temperature
,
Phantoms
,
Probes
,
Thermal diffusivity
Controlled Freezing of Nonideal Solutions With Application to Cryosurgical Processes
J Biomech Eng. November 1991, 113(4): 430–437.
doi: https://doi.org/10.1115/1.2895423
Topics:
Freezing
,
Temperature
,
Cooling
,
Errors
,
Probes
,
Biological tissues
,
Boiling
,
Control systems
,
Finite element analysis
,
Junctions
A Combined Heat Clearance Method for Tissue Blood Flow Measurement
J Biomech Eng. November 1991, 113(4): 438–445.
doi: https://doi.org/10.1115/1.2895424
Topics:
Biological tissues
,
Blood flow measurement
,
Clearances (Engineering)
,
Heat
,
Blood flow
,
Brain
,
Calibration
,
Computer software
,
Computers
,
Hydrogen
Species Dependence of the Zero-Stress State of Aorta: Pig Versus Rat
J Biomech Eng. November 1991, 113(4): 446–451.
doi: https://doi.org/10.1115/1.2895425
Topics:
Aorta
,
Stress
,
Vessels
,
Aortic arch
,
Muscle
,
Wall thickness
,
Blood vessels
,
Potassium
The Pressure-Flow Relation for Plasma in Whole Organ Skeletal Muscle and Its Experimental Verification
J Biomech Eng. November 1991, 113(4): 452–457.
doi: https://doi.org/10.1115/1.2895426
Topics:
Flow (Dynamics)
,
Muscle
,
Plasmas (Ionized gases)
,
Pressure
,
Vessels
,
Polynomials
,
Viscosity
,
Biological tissues
,
Blood vessels
,
Physiology
The Effect of Angle and Flow Rate Upon Hemodynamics in Distal Vascular Graft Anastomoses: An In Vitro Model Study
J Biomech Eng. November 1991, 113(4): 458–463.
doi: https://doi.org/10.1115/1.2895427
Topics:
Flow (Dynamics)
,
Hemodynamics
,
Exterior walls
,
Junctions
,
Shear (Mechanics)
,
Flow visualization
,
Laser Doppler anemometry
,
Shear rate
,
Tubing
Pulsatile Non-Newtonian Flow Characteristics in a Three-Dimensional Human Carotid Bifurcation Model
J Biomech Eng. November 1991, 113(4): 464–475.
doi: https://doi.org/10.1115/1.2895428
Topics:
Bifurcation
,
Non-Newtonian flow
,
Flow (Dynamics)
,
Shear stress
,
Cycles
,
Exterior walls
,
Blood
,
Carotid arteries
,
Flow separation
,
Numerical analysis
One-Dimensional Computer Analysis of Oscillatory Flow in Rigid Tubes
J Biomech Eng. November 1991, 113(4): 476–484.
doi: https://doi.org/10.1115/1.2895429
Topics:
Computers
,
Flow (Dynamics)
,
Damping
,
Oscillations
,
Transducers
,
Catheters
,
Fluids
,
Navier-Stokes equations
,
Turbulence
Sedimentation of a Suspension in a Centrifugal Field
J Biomech Eng. November 1991, 113(4): 485–491.
doi: https://doi.org/10.1115/1.2895430
Topics:
Sedimentation
,
Particulate matter
,
Blood
,
Containers
,
Geometry
,
Partial differential equations
,
Shock (Mechanics)
,
Vessels
Technical Briefs
Cardiac Mechanics at the Cellular Level
J Biomech Eng. November 1991, 113(4): 492–495.
doi: https://doi.org/10.1115/1.2895431
Topics:
Biological tissues
,
Fibers
,
Mechanical properties
,
Myocardium
,
Physiology
,
Stress