Abstract

The smoothing element analysis for stress recovery and error estimation is applied to facilitate adaptive finite element solutions of adhesively bonded structures. The formulation is based on the minimization of a penalized discrete least-squares variational principle leading up to the recovery of C1-continuous stress fields from discrete, Gauss-point finite element stresses. The smoothed distributions are then used as reference solutions in a posteriori error estimators. Adaptive mesh refinements are performed to predict the linearly elastic response of uniformed and tapered double splice adhesively bonded joints. Key aspects pertaining to specific smoothing strategies, adaptive refinement solutions, and detailed stress distributions are discussed. Consistent comparisons are also presented with Oplinger’s one-dimensional adhesive lap joint analysis.

References

1.
Volkersen
,
O.
, “
Die Niektraftverteilung in Zugbeanspruchten mit Konstanten Laschenquerschritten
,”
Lufifahrtforschung
15
,
1938
, pp.
41
-
47
.
2.
Goland
,
M.
and
Reissner
,
E.
, “
The Stresses in Cemented Joints
,”
Journal of Applied Mechanics
,
11
,
1944
, pp.
A17
-
A27
.
3.
Oplinger
,
D. W.
, “
Effects of Adherend Deflections in Single Lap Joints
,”
International Journal of Solids Structures
,
31
, No.
18
,
1994
, pp.
2565
-
2587
.
4.
Oplinger
,
D. W.
, “
Program TJOINTNL to Obtain Finite Difference Solutions for Bond Stresses in Double Lap/Strap Joints with Tapered Adherends and Ductile Bond Layer
,” Unpublished notes,
2000
.
5.
Tsai
,
M. Y.
,
Oplinger
,
D. W.
, and
Morton
,
J.
, “
Improved Theoretical Solutions for Adhesive Lap Joints
,”
International Journal of Solids and Structures
,
35
,
1998
, pp.
1163
-
1185
.
6.
Tessler
,
A.
,
Freese
,
C.
,
Anastasi
,
R.
,
Serabian
,
S.
,
Oplinger
,
D.
, and
Katz
,
A.
, “
Least Squares Penalty-Constraint Finite Element Method for Generating Strain Fields from Moire Fringe Patterns
,”
Proceedings, International Conference on Photomechanics and Speckle Metrology
,
San Diego
, 814,
1987
, pp.
314
-
323
.
7.
Tessler
,
A.
,
Riggs
,
H. R.
, and
Macy
,
S. C.
, “
Application of a Variational Method for Computing Smooth Stresses, Stress Gradients, and Error Estimation in Finite Element Analysis
,”
J. R.
Whiteman
(ed.),
The Mathematics of Finite Elements and Applications
,
John Wiley & Sons, Ltd.
,
1994
, pp.
189
-
198
.
8.
Tessler
,
A.
,
Riggs
,
H. R.
, and
Macy
,
S. C.
, “
A Variational Method for Finite Element Stress Recovery and Error Estimation
,”
Computer Methods in Applied Mechanics and Engineering
,
111
,
1994
, pp.
369
-
382
.
9.
Riggs
,
H. R.
and
Tessler
,
A.
, “
Continuous versus Wireframe Variational Smoothing Methods for Finite Element Stress Recovery
,”
Proceedings, Advances in Post and Preprocessing for Finite Element Technology Computational Structures Technology
,
Athens, Greece
,
1994
, pp.
137
-
144
.
10.
Tessler
,
A.
and
Riggs
,
H. R.
, “
Accurate Interlaminar Stress Recovery from Finite Element Analysis
,”
NASA Technical Memorandum
 109149,
1994
.
11.
Riggs
,
H. R.
,
Tessler
,
A.
, and
Chu
,
H.
, “
C1-Continuous Stress Recovery in Finite Element Analysis
,”
Computer Methods in Applied Mechanics and Engineering
,
143
(
3/4
),
1997
, pp.
299
-
316
.
12.
Tessler
,
A.
,
Riggs
,
H. R.
,
Freese
,
C. E.
, and
Cook
,
G. M.
, “
An Improved Variational Method for Finite Element Stress Recovery and a Posteriori Error Estimation
,”
Computer Methods in Applied Mechanics and Engineering
,
155
,
1998
, pp.
15
-
30
.
13.
Tessler
,
A.
,
Riggs
,
H. R.
, and
Dambach
,
M.
A Novel Four-Node Quadrilateral Smoothing Element for Stress Enhancement and Error Estimation
,”
International Journal for Numerical Methods in Engineering
,
44
,
1999
, pp.
1527
-
1543
.
14.
Yazdani
,
A. A.
,
Riggs
,
H. R.
, and
Tessler
,
A.
, “
Stress Recovery and Error Estimation for Shell Structures
,”
International Journal for Numerical Methods in Engineering
,
47
,
2000
, pp.
1825
-
1840
.
15.
Dambach
,
M.
, “
Improvements in Stress Recovery and Error Estimation for Adaptive Mesh Refinement in Aerospace Structures
,” M.S. thesis,
George Washington University
,
1998
.
16.
Moas
,
E.
(Ed.), “
COMET-AR User’s Manual
,”
NASA
/CR-97-206284,
12
1997
.
17.
Zienkiewicz
,
O. C.
and
Zhu
,
J. Z.
, “
The Superconvergent Patch Recovery (SPR) and Adaptive Finite Element Refinement
,”
Computer Methods in Applied Mechanics and Engineering
,
101
,
1992
, pp.
207
-
224
.
18.
Wiberg
,
N. E.
and
Abdulwahab
,
F.
, “
Patch Recovery Based on Superconvergent Derivatives and Equilibrium
,”
International Journal for Numerical Methods in Engineering
,
36
,
1993
, pp.
2703
-
2724
.
19.
Belytschko
,
T.
and
Blacker
,
T.
Enhanced Derivative Recovery Through Least Square Residual Penalty
,”
Applied Numerical Mathematics
,
14
(
1
),
1994
, pp.
55
-
68
.
20.
Lee
,
T. O.
,
Park
,
H. C.
, and
Lee
,
S. W.
, “
A Superconvergent Stress Recovery Technique with Equilibrium Constraint
,”
International Journal for Numerical Methods in Engineering
,
40
(
7
),
1997
, pp.
1139
-
1160
.
21.
Boroomand
,
B.
and
Zienkiewicz
,
O. C.
, “
An Improved REP Recovery and the Effectivity Robustness Test
,”
International Journal for Numerical Methods in Engineering
,
40
,
1997
, pp.
3247
-
3277
.
This content is only available via PDF.
You do not currently have access to this content.