In this article by introducing and subsequently applying the Min–Max method, chaos has been suppressed in discrete time systems. By using this nonlinear technique, the chaotic behavior of Behrens–Feichtinger model is stabilized on its first and second-order unstable fixed points (UFP) in presence and absence of noise signal. In this step, a comparison has also been carried out among the proposed Min–Max controller and the Pyragas delayed feedback control method. Next, to reduce the computation required for controller design, the clustering method has been introduced as a quantization method in the Min–Max control approach. To improve the performance of the acquired controller through clustering method obtained with the Min–Max method, a linear optimal controller is also introduced and combined with the previously discussed nonlinear control law. The resultant combined controller has been applied on the Henon map and through comparison with both Pyragas controller, and the linear optimal controller alone, its advantages are discussed.

References

1.
Devaney
,
R. L.
,
2003
,
An Introduction to Chaotic Dynamical Systems
,
Westview Press
, Boulder, CO.
2.
Argyris
,
J. H.
,
Faust
,
G.
, and
Haase
,
M.
,
1994
, An Exploration of Chaos: An Introduction for Natural Scientists and Engineers, North-Holland, Netherlands.
3.
Sadeghian
,
H.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2007
, “
Chaos Control in Continuous Mode of T-AFM Systems Using Nonlinear Delayed Feedback via Sliding Mode Control
,”
ASME
Paper No. IMECE2007-42794. 10.1115/IMECE2007-42794
4.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.10.1103/PhysRevLett.64.1196
5.
Akhmet
,
M.
, and
Fen
,
M.
,
2012
, “
Chaotic Period-Doubling and OGY Control for the Forced Duffing Equation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
4
), pp.
1929
1946
.10.1016/j.cnsns.2011.09.016
6.
Zhu
,
L.
, and
Wang
,
Y.
,
2006
, “
Study on the Stability of Switched Dissipative Hamiltonian Systems
,”
Sci. China Ser. F: Inf. Sci.
,
49
(
5
), pp.
578
591
.10.1007/s11432-006-2005-7
7.
Shinbort
,
T.
,
Grebogi
,
C.
,
Ott
,
E.
, and
Yorke
,
J. A.
,
1993
, “
Using Small Perturbation to Control Chaos
,”
Nature
,
386
, pp.
411
417
.10.1038/363411a0
8.
Shinbort
,
T.
,
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Using Chaos to Direct Trajectories to Targets
,”
Phys. Rev. Lett.
,
65
, pp.
3215
3218
.10.1103/PhysRevLett.65.3215
9.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.10.1016/0375-9601(92)90745-8
10.
Hwang
,
C. C.
,
Fung
,
R. F.
,
Hsieh
,
J. Y.
, and
Li
,
W. J.
,
1999
, “
Nonlinear Feedback Control of the Lorenz Equation
,”
Int. J. Eng. Sci.
,
37
(14), pp.
1893
1900
.10.1016/S0020-7225(98)00150-5
11.
Liaw
,
Y. M.
, and
Tung
,
P. C.
,
1996
, “
Controlling Chaos via State Feedback Cancellation Under a Noisy Environment
,”
Phys. Lett. A
,
211
(6), pp.
350
356
.10.1016/0375-9601(96)00009-6
12.
Sadeghian
,
H.
,
Salarieh
,
H.
,
Alasty
,
A.
, and
Meghdari
,
A.
,
2011
, “
On the Control of Chaos via Fractional Delayed Feedback Method
,”
Comput. Math. Appl.
,
62
(
3
), pp.
1482
1491
.10.1016/j.camwa.2011.05.002
13.
Chen
,
G.
, and
Dong
,
X.
,
1993
, “
On Feedback Control of Chaotic Continuous-Time Systems
,”
IEEE Trans. Circuits Syst. I
,
40
(
9
), pp.
591
601
.10.1109/81.244908
14.
Fuh
,
C. C.
, and
Tsai
,
H. H.
,
2002
, “
Control of Discrete-Time Chaotic Systems via Feedback Linearization
,”
Chaos Solitons Fractals
,
13
, pp.
285
294
.10.1016/S0960-0779(00)00273-3
15.
Cao
,
Y. J.
,
2000
, “
A Nonlinear Adaptive Approach to Controlling Chaotic Oscillators
,”
Phys. Lett. A
,
270
, pp.
171
176
.10.1016/S0375-9601(00)00299-1
16.
Layeghi
,
H.
,
Arjmand
,
M. T.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2008
, “
Stabilizing Periodic Orbits of Chaotic Systems Using Fuzzy Adaptive Sliding Mode Control
,”
Chaos Solitons Fractals
,
37
(
4
), pp.
1125
1135
.10.1016/j.chaos.2006.10.021
17.
Salarieh
,
H.
, and
Shahrokhi
,
M.
,
2007
, “
Indirect Adaptive Control of Discrete Chaotic Systems
,”
Chaos Solitons Fractals
,
34
(
4
), pp.
1188
1201
.10.1016/j.chaos.2006.03.115
18.
Fuh
,
C.-C.
,
Tsai
,
H.-H.
, and
Yao
,
W.-H.
,
2012
, “
Combining a Feedback Linearization Controller With a Disturbance Observer to Control a Chaotic System Under External Excitation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
3
), pp.
1423
1429
.10.1016/j.cnsns.2011.08.007
19.
Cruz-Villar
,
C. A.
,
2007
, “
Optimal Stabilization of Unstable Periodic Orbits Embedded in Chaotic Systems
,”
Rev. Mex. Fis.
,
53
(
5
), pp.
415
420
. Available at http://www.scielo.org.mx/scielo.php?pid=S0035-001X2007000500013&script=sci_arttext
20.
Jayaram
,
A.
, and
Tadi
,
M.
,
2006
, “
Synchronization of Chaotic Systems Based on SDRE Method
,”
Chaos Solitons Fractals
,
28
(
3
), pp.
707
715
.10.1016/j.chaos.2005.04.117
21.
El-Gohary
,
A.
,
2006
, “
Optimal Synchronization of Rossler System With Complete Uncertain Parameters
,”
Chaos Solitons Fractals
,
27
(
2
), pp.
345
355
.10.1016/j.chaos.2005.03.043
22.
Rafikov
,
M.
, and
Balthazar
,
J. M.
,
2004
, “
On an Optimal Control Design for Rossler System
,”
Phys. Lett. A
,
333
(
3–4
), pp.
241
245
.10.1016/j.physleta.2004.10.032
23.
Tian
,
Y. C.
,
Tade
,
M. O.
, and
Levy
,
D.
,
2002
, “
Constrained Control of Chaos
,”
Phys. Lett. A
,
296
(
2–3
), pp.
87
90
.10.1016/S0375-9601(02)00285-2
24.
Li
,
S.
,
Li
,
Y.
,
Liu
,
B.
, and
Murray
,
T.
,
2012
, “
Model-Free Control of Lorenz Chaos Using an Approximate Optimal Control Strategy
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
4891
4900
.10.1016/j.cnsns.2012.05.024
25.
Bellman
,
R.
,
1957
,
Dynamic Programming
,
Princeton University Press
,
Princeton NJ
.
26.
Bjornberg
,
J.
, and
Diehl
,
M.
,
2006
, “
Approximate Robust Dynamic Programming and Robustly Stable MPC
,”
Automatica
,
42
(
5
), pp.
777
782
.10.1016/j.automatica.2005.12.016
27.
de Cooman
,
G.
, and
Troffaes
,
M. C. M.
,
2005
, “
Dynamic Programming for Deterministic Discrete-Time Systems With Uncertain Gain
,”
Int. J. Approx. Reason.
,
39
(
2–3
), pp.
257
278
.10.1016/j.ijar.2004.10.004
28.
Merat
,
K.
,
Salarieh
,
H.
, and
Alasty
,
A.
,
2009
, “
Implementation of Dynamic Programming for Chaos Control in Discrete Systems
,”
J. Comput. Appl. Math.
,
233
(
2
), pp.
531
544
.10.1016/j.cam.2009.08.002
29.
Behrens
,
D. A.
,
Caulkins
,
J. P.
, and
Feichtinger
,
G.
,
2004
, “
A Model of Chaotic Drug Markets and Their Control
,”
Nonlinear Dyn. Psychol. Life Sci.
,
8
(
3
), pp.
375
401
. Available at http://www.ncbi.nlm.nih.gov/pubmed/15233880
30.
Hołyst
,
J. A.
, and
Urbanowicz
,
K.
,
2000
, “
Chaos Control in Economical Model by Time-Delayed Feedback Method
,”
Phys. A
,
287
(
3
), pp.
587
598
.10.1016/S0378-4371(00)00395-2
31.
Bertsekas
,
D. P.
,
1995
,
Dynamic Programming and Optimal Control
,
Athena Scientific
, Belmont, MA.
You do not currently have access to this content.