The primary work of this paper is to investigate some potential properties of Grünwald–Letnikov discrete fractional calculus. By employing a concise and convenient description, this paper not only establishes excellent relationships between fractional difference/sum and the integer order case but also generalizes the Z-transform and convolution operation.
Issue Section:
Research Papers
References
1.
Hu
, W.
, Ding
, D. W.
, and Wang
, N.
, 2017
, “Nonlinear Dynamic Analysis of a Simplest Fractional-Order Delayed Memristive Chaotic System
,” ASME J. Comput. Nonlinear Dyn.
, 12
(4
), p. 041003
.2.
Zou
, C. F.
, Hu
, X. S.
, Dey
, S.
, Zhang
, L.
, and Tang
, X. L.
, 2018
, “Nonlinear Fractional-Order Estimator With Guaranteed Robustness and Stability for Lithium-Ion Batteries
,” IEEE Trans. Ind. Electron.
, 65
(7
), pp. 5951
–5961
.3.
Chen
, K.
, Li
, C.
, and Tang
, R. N.
, 2017
, “Estimation of the Nitrogen Concentration of Rubber Tree Using Fractional Calculus Augmented NIR Spectra
,” Ind. Crops Prod.
, 108
, pp. 831
–839
.4.
Sun
, H. G.
, Zhang
, Y.
, Baleanu
, D.
, Chen
, W.
, and Chen
, Y. Q.
, 2018
, “A New Collection of Real World Applications of Fractional Calculus in Science and Engineering
,” Commun. Nonlinear Sci. Numer. Simul.
, 64
, pp. 213
–231
.5.
Podlubny
, I.
, 1999
, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications
, Academic Press
, San Diego, CA
.6.
Meerschaert
, M. M.
, Mortensen
, J.
, and Scheffler
, H. P.
, 2004
, “Vector Grünwald Formula for Fractional Derivatives
,” Fractional Calculus Appl. Anal.
, 7
(1
), pp. 61
–82
.https://www.stt.msu.edu/~mcubed/multigrunwald.pdf7.
Meerschaert
, M. M.
, and Tadjeran
, C.
, 2004
, “Finite Difference Approximations for Fractional Advection-Dispersion Flow Equations
,” J. Comput. Appl. Math.
, 172
(1
), pp. 65
–77
.8.
Stynes
, M.
, O'Riordan
, E.
, and Gracia
, J. L.
, 2017
, “Error Analysis of a Finite Difference Method on Graded Meshes for a Time-Fractional Diffusion Equation
,” SIAM J. Numer. Anal.
, 55
(2
), pp. 1057
–1079
.9.
Hajipour
, M.
, Jajarmi
, A.
, and Baleanu
, D.
, 2018
, “An Efficient Non-Standard Finite Difference Scheme for a Class of Fractional Chaotic Systems
,” ASME J. Comput. Nonlinear Dyn.
, 13
(2
), p. 021013
.10.
Zhao
, M.
, Wang
, H.
, and Cheng
, A. J.
, 2018
, “A Fast Finite Difference Method for Three-Dimensional Time-Dependent Space-Fractional Diffusion Equations With Fractional Derivative Boundary Conditions
,” J. Sci. Comput.
, 74
(2
), pp. 1009
–1033
.11.
Abdelouahab
, M. S.
, and Hamri
, N. E.
, 2016
, “The Grünwald–Letnikov Fractional-Order Derivative With Fixed Memory Length
,” Mediterr. J. Math.
, 13
(2
), pp. 557
–572
.12.
Holm
, M. T.
, 2011
, “The Laplace Transform in Discrete Fractional Calculus
,” Comput. Math. Appl.
, 62
(3
), pp. 1591
–1601
.13.
Wei
, Y. H.
, Chen
, Y. Q.
, Cheng
, S. S.
, and Wang
, Y.
, 2017
, “A Note on Short Memory Principle of Fractional Calculus
,” Fractional Calculus Appl. Anal.
, 20
(6
), pp. 1382
–1404
.14.
Wei
, Y. H.
, Gao
, Q.
, Liu
, D. Y.
, and Wang
, Y.
, 2019
, “On the Series Representation of Nabla Discrete Fractional Calculus
,” Commun. Nonlinear Sci. Numer. Simul.
, 69
, pp. 198
–218
.15.
Wu
, G. C.
, Baleanu
, D.
, and Huang
, L. L.
, 2018
, “Novel Mittag-Leffler Stability of Linear Fractional Delay Difference Equations With Impulse
,” Appl. Math. Lett.
, 82
, pp. 71
–78
.16.
Wei
, Y. H.
, Chen
, Y. Q.
, Liu
, T. Y.
, and Wang
, Y.
, 2018
, “Lyapunov Functions for Nabla Discrete Fractional Order Systems
,” ISA Trans.
(epub).17.
Kumar
, D.
, Singh
, J.
, and Baleanu
, D.
, 2016
, “Numerical Computation of a Fractional Model of Differential-Difference Equation
,” ASME J. Comput. Nonlinear Dyn.
, 11
(6
), p. 061004
.18.
Wei
, Y. H.
, Chen
, Y. Q.
, Wang
, J. C.
, and Wang
, Y.
, 2019
, “Analysis and Description of the Infinite-Dimensional Nature for Nabla Discrete Fractional Order Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 72
, pp. 472
–492
.19.
Cheng
, S. S.
, Wei
, Y. H.
, Chen
, Y. Q.
, Liang
, S.
, and Wang
, Y.
, 2017
, “A Universal Modified LMS Algorithm With Iteration Order Hybrid Switching
,” ISA Trans.
, 67
, pp. 67
–75
.20.
Liu
, T. Y.
, Cheng
, S. S.
, Wei
, Y.
, Li
, A.
, and Wang
, Y.
, 2019
, “Fractional Central Difference Kalman Filter With Unknown Prior Information
,” Signal Process.
, 154
, pp. 294
–303
.21.
Yang
, Q.
, Chen
, D. L.
, Zhao
, T. B.
, and Chen
, Y. Q.
, 2016
, “Fractional Calculus in Image Processing: A Review
,” Fractional Calculus Appl. Anal.
, 19
(5
), pp. 1222
–1249
.22.
Goodrich
, C.
, and Peterson
, A. C.
, 2015
, Discrete Fractional Calculus
, Springer
, Cham, Switzerland
.23.
Cheng
, J. F.
, 2011
, Fractional Difference Equation Theory
, Xiamen University Press
, Xiamen, China
.24.
Ostalczyk
, P.
, 2015
, Discrete Fractional Calculus: Applications in Control and Image Processing
, World Scientific
, Berlin
.25.
Mozyrska
, D.
, and Girejko
, E.
, 2013
, “Overview of Fractional h-Difference Operators
,” Operator Theory: Advances and Applications
, Springer
, Basel, Switzerland
, pp. 253
–268
.Copyright © 2019 by ASME
You do not currently have access to this content.