Fractional Bloch equation is a generalized form of the integer order Bloch equation. It governs the dynamics of an ensemble of spins, controlling the basic process of nuclear magnetic resonance (NMR). Scale-3 (S-3) Haar wavelet operational matrix along with quasi-linearization is applied first time to detect the spin flow of fractional Bloch equations. A comparative analysis of performance of classical scale-2 (S-2) and novel scale-3 Haar wavelets (S-3 HW) has been carried out. The analysis shows that scale-3 Haar wavelets give better solutions on coarser grid point in less computation time. Error analysis shows that as we increase the level of the S-3 Haar wavelets, error goes to zero. Numerical experiments have been conducted on five test problems to illustrate the merits of the proposed novel scheme. Maximum absolute errors, comparison of exact solutions, and S-2 Haar wavelet and S-3 Haar wavelet solutions, are reported. The physical behaviors of computed solutions are also depicted graphically.

References

1.
Abergel
,
D.
,
2002
, “
Chaotic Solutions of the Feedback Driven Bloch Equations
,”
Phys. Lett. A
,
302
(
1
), pp.
17
22
.
2.
Ghosh
,
D.
,
Chowdhury
,
A. R.
, and
Saha
,
P.
,
2008
, “
Bifurcation Continuation, Chaos and Chaos Control in Nonlinear Bloch System
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
8
), pp.
1461
1471
.
3.
Abergel
,
D.
,
Joseph
,
A. L.
, and
Lallemand
,
J. Y.
,
2002
, “
Self-Sustained Maser Oscillations of a Large Magnetization Driven by a Radiation Damping-Based Electronic Feedback
,”
J. Chem. Phys., Am. Inst. Phys.
,
116
, pp.
7073
7080
.https://aip.scitation.org/doi/10.1063/1.1462583
4.
Yu
,
Q.
,
Liu
,
F.
,
Turner
,
I.
, and
Burrage
,
K.
,
2014
, “
Numerical Simulation of the Fractional Bloch Equations
,”
J. Comput. Appl. Math.
,
255
, pp.
635
651
.
5.
Magin
,
R.
,
Feng
,
X.
, and
Baleanu
,
D.
,
2009
, “
Solving the Fractional Order Bloch Equation
,”
Concepts Magn. Reson. Part A
,
34A
(
1
), pp.
16
23
.
6.
Petras
,
I.
,
2011
, “
Modeling and Numerical Analysis of Fractional-Order Bloch Equations
,”
Comput. Math. Appl.
,
61
, pp.
341
356
.
7.
Abuteen
,
E.
,
Momani
,
S.
, and
Alawneh
,
A.
,
2014
, “
Solving the Fractional Nonlinear Bloch System Using the Multi-Step Generalized Differential Transform Method
,”
Comput. Math. Appl.
,
68
(
12
), pp.
2124
2132
.
8.
Balac
,
S.
, and
Chupin
,
L.
,
2008
, “
Fast Approximate Solution of Bloch Equation for Simulation of RF Artifacts in Magnetic Resonance Imaging
,”
Math. Comput. Modell.
,
48
(
11–12
), pp.
1901
1913
.
9.
Park
,
J. H.
,
2006
, “
Chaos Synchronization of Nonlinear Bloch Equations
,”
Chaos, Solitons Fractals
,
27
, pp.
357
361
.
10.
Kakmeni
,
F. M. M.
,
Nguenang
,
J. P.
, and
Kofane
,
T. C.
,
2006
, “
Chaos Synchronization in bi-Axialmagnets Modeled by Bloch Equation, Chaos
,”
Solitons Fractals
,
30
(
3
), pp.
690
699
.
11.
Qin
,
S.
,
Liu
,
F.
,
Turner
,
I.
,
Vegh
,
V.
,
Yu
,
Q.
, and
Yang
,
Q.
,
2017
, “
Multi-Term Time-Fractional Bloch Equations and Application in Magnetic Resonance Imaging
,”
J. Comput. Appl. Math.
,
319
, pp.
308
319
.
12.
Bhalekar
,
S.
,
Gejji
,
V. D.
,
Baleanu
,
D.
, and
Magin
,
R.
,
2012
, “
Transient Chaos in Fractional Bloch Equations
,”
Comput. Math. Appl.
,
64
(
10
), pp.
3367
3376
.
13.
Magin
,
R. L.
,
Abdullah
,
O.
,
Baleanu
,
D.
, and
Zhou
,
X. J.
,
2008
, “
Anomalous Diffusion Expressed Through Fractional Order Differential Operators in the Bloch–Torrey Equation
,”
J. Magn. Reson.
,
2
, pp.
255
270
.https://www.sciencedirect.com/science/article/pii/S1090780707003473?via%3Dihub
14.
Gómez-Aguilar
,
J. F.
,
2019
, “
Chaos in a Nonlinear Bloch System With Atangana-Baleanu Fractional Derivatives
,”
Numer. Methods Partial Differential Equations
,
34
(
5
), pp.
1716
1738
.
15.
Bhalekar
,
S.
,
Gejji
,
V. D.
,
Baleanu
,
D.
, and
Magin
,
R. L.
,
2011
, “
Fractional Bloch Equation With Delay
,”
Comput. Math. Appl.
,
5
, pp.
1355
1365
.https://www.sciencedirect.com/science/article/pii/S089812211100006X
16.
Mittal
,
R. C.
, and
Pandit
,
S.
,
2017
, “
Quasilinearized Scale-3 Haar Wavelets-Based Algorithm for Numerical Simulation of Fractional Dynamical systems
,”
Eng. Comput.
,
35
(
5
), pp.
1907
1931
.
17.
Saeed
,
U.
, and
Rehman
,
M.
,
2013
, “
Haar Wavelet-Quasilinearization Technique for Fractional Nonlinear Differential Equations
,”
Appl. Math. Comput.
,
220
, pp.
630
648
.https://www.sciencedirect.com/science/article/pii/S0096300313007686
18.
Yi
,
I. M.
, and
Huang
,
J.
,
2014
, “
Wavelet Operational Matrix Method for Solving Fractional Differential Equations With Variable Coefficients
,”
Appl. Math. Comput.
,
230
, pp.
383
394
.https://www.sciencedirect.com/science/article/pii/S0096300313012186
19.
Chui
,
C. K.
, and
Lian
,
J. A.
,
1995
, “
Construction of Compactly Supported Symmetric and Anti Symmetric Orthonormal Wavelets With Scale-3
,”
Appl. Comput. Harmonic Anal.
,
2
(
1
), pp.
21
51
.
20.
Kumar
,
M.
, and
Pandit
,
S.
,
2014
, “
A Composite Numerical Scheme for the Numerical Simulation of Coupled Burgers' Equation
,”
Comput. Phys. Commun.
,
185
(
3
), pp.
809
817
.
21.
Pandit
,
S.
,
Kumar
,
M.
, and
Tiwari
,
S.
,
2015
, “
Numerical Simulation of Second-Order Hyperbolic Telegraph Type Equations With Variable Coefficients
,”
Comput. Phys. Commun.
,
187
, pp.
83
90
.
22.
Chen
,
Y.
,
Yi
,
M.
, and
Yu
,
C.
,
2012
, “
Error Analysis for Numerical Solution of Fractional Differential Equation by Haar Wavelets Method
,”
J. Comput. Sci.
,
3
(
5
), pp.
367
373
.
23.
Kaur
,
H.
,
Mittal
,
R. C.
, and
Mishra
,
V.
,
2011
, “
Haar Wavelet Quasilinearization Approach for Solving Nonlinear Boundary Value Problems
,”
Am. J. Comput. Math.
,
01
(
3
), pp.
176
182
.
24.
Jiwari
,
R.
,
2015
, “
A Hybrid Numerical Scheme for the Numerical Solution of the Burgers' Equation
,”
Comput. Phys. Commun.
,
188
, pp.
59
67
.
25.
Jiwari
,
R.
,
2012
, “
Haar Wavelet Quasilinearization Approach for Numerical Simulation of Burgers' Equation
,”
Comput. Phys. Commun.
,
183
(
11
), pp.
2413
2423
.
26.
Pandit
,
S.
, and
Kumar
,
M.
,
2014
, “
Haar Wavelet Approach for Numerical Solution of Two Parameters Singularly Perturbed Boundary Value Problems
,”
Appl. Math. Inf. Sci.
,
8
, pp.
2965
2974
.
27.
Mittal
,
R. C.
, and
Pandit
,
S.
,
2018
, “
New Scale-3 Haar Wavelets Algorithm for Numerical Simulation of Second Order Ordinary Differential Equations
,”
Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci.
(epub).
28.
Mittal
,
R. C.
, and
Pandit
,
S.
,
2017
, “
Sensitivity Analysis of Shock Wave Burgers' Equation Via a Novel Algorithm Based on Scale-3 Haar Wavelets
,”
Int. J. Comput. Math.
,
95
(
3
), pp.
601
625
.https://www.tandfonline.com/doi/abs/10.1080/00207160.2017.1293820?tab=permissions&scroll=top
29.
Mittal
,
R. C.
, and
Pandit
,
S.
,
2017
, “
Numerical Simulation of Unsteady Squeezing Nano-Fluid and Heat Flow Between Two Parallel Plates Using Wavelets
,”
Int. J. Therm. Sci.
,
118
, pp.
410
422
.
30.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
NewYork
.
31.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
A New Analysis of the Fornberg-Whitham Equation Pertaining to a Fractional Derivative With Mittag-Leffler–Type Kernel
,”
Eur. Phys. J. Plus
,
133
, p.
70
.
32.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
Modified Kawahara Equation Within a Fractional Derivative, Modified Kawahara Equation Within a Fractional Derivative With Non-Singular Kernel
,”
Therm. Sci.
,
22
(
2
), pp.
789
796
.
33.
Kumar
,
D.
,
Agarwal
,
R. P.
, and
Singh
,
J.
,
2018
, “
Modified Numerical Scheme and Convergence Analysis for Fractional Model of Lienard's Equation
,”
J. Comput. Appl. Math.
,
339
, pp.
405
413
.https://www.sciencedirect.com/science/article/pii/S0377042717301309
You do not currently have access to this content.