The geometry of a space curve, including its curvature and torsion, can be uniquely defined in terms of only one parameter which can be the arc length parameter. Using the differential geometry equations, the Frenet frame of the space curve is completely defined using the curve equation and the arc length parameter only. Therefore, when Euler angles are used to describe the curve geometry, these angles are no longer independent and can be expressed in terms of one parameter as field variables. The relationships between Euler angles used in the definition of the curve geometry are developed in a closed-differential form expressed in terms of the curve curvature and torsion. While the curvature and torsion of a space curve are unique, the Euler-angle representation of the space curve is not unique because of the noncommutative nature of the finite rotations. Depending on the sequence of Euler angles used, different expressions for the curvature and torsion can be obtained in terms of Euler angles, despite the fact that only one Euler angle can be treated as an independent variable, and such an independent angle can be used as the curve parameter instead of its arc length, as discussed in this paper. The curve differential equations developed in this paper demonstrate that the curvature and torsion expressed in terms of Euler angles do not depend on the sequence of rotations only in the case of infinitesimal rotations. This important conclusion is consistent with the definition of Euler angles as generalized coordinates in rigid body dynamics. This paper generalizes this definition by demonstrating that finite rotations cannot be directly associated with physical geometric properties or deformation modes except in the cases when infinitesimal-rotation assumptions are used.

## References

1.
Ginsberg
,
J.
,
2008
,
Engineering Dynamics
,
Cambridge University Press
,
New York
.
2.
Greenwood
,
D. T.
,
1988
,
Principle of Dynamics
, 2nd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
3.
Goldstein
,
H.
,
1950
,
Classical Mechanics
,
,
Cambridge, MA
.
4.
Rosenberg
,
R. M.
,
1977
,
Analytical Dynamics of Discrete Systems
,
Plenum Press
,
New York
.
5.
Huston
,
R. L.
,
1990
,
Multibody Dynamics
,
Butterworth-Heinemann
,
Oxford, UK
.
6.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
, 3rd ed.,
Wiley
,
Chichester, UK
.
7.
Goetz
,
A.
,
1970
,
Introduction to Differential Geometry
,
,
Boston, MA
.
8.
Kreyszig
,
E.
,
1991
,
Differential Geometry
,
Dover Publications
,
Mineola, NY
.
9.
Do Carmo
,
M. P.
,
1976
,
Differential Geometry of Curves and Surfaces: Revised and Updated Second Edition
,
Dover Publications
,
Mineola, NY
.
10.
Rathod
,
C.
, and
Shabana
,
A. A.
,
2006
, “
Rail Geometry and Euler Angles
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
264
268
.
11.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
12.
Boresi
,
A. P.
, and
Chong
,
K. P.
,
2000
,
Elasticity in Engineering Mechanics
, 2nd ed.,
Wiley
,
Chichester, UK
.
13.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
Chichester, UK
.
14.
Ogden
,
R. W.
,
1984
,
Non-Linear Elastic Deformations
,
Dover Publications
,
Mineola, NY
.
15.
Ugral
,
A. C.
, and
Fenster
,
K.
,
1979
,
,
Elsevier
,
New York
.
16.
Shabana
,
A. A.
,
2018
,
Computational Continuum Mechanics
, 3rd ed.,
Wiley & Sons
,
Chichester, UK
.
17.
Bathe
,
K. J.
,
1996
,
Finite Element Procedures
,
Prentice Hall
,
Englewood Cliffs, NJ
.
18.
Cook
,
R. D.
,
Malkus
,
D. S.
, and
Plesha
,
M. E.
,
1989
,
Concepts and Applications of Finite Element Analysis
, 3rd ed.,
Wiley
,
New York
.
19.
Zienkiewicz
,
O. C.
,
1977
,
Finite Element Method
, 3rd ed.,
McGraw-Hill
,
New York
.
20.
Zienkiewicz
,
O. C.
, and
Taylor
,
R. L.
,
2000
, “
The Finite Element Method
,”
Solid Mechanics
, 5th ed., Vol.
2
,
Butterworth Heinemann
,
Oxford, UK
.
21.
Simo
,
J. C.
,
1985
, “
A Finite Strain Beam Formulation. The Three-Dimensional Dynamics Problem—Part I
,”
Comp. Meth. Appl. Mech. Eng.
,
49
(
1
), pp.
55
70
.
22.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case
: Part I,”
ASME J. Appl. Mech.
,
53
(
4
), pp.
849
863
.
23.
Simo, J. C., and Vu-Quoc, L., 1986, “On the Dynamics of Flexible Beams Under Large Overall Motions—The Plane Case: Part II,”
ASME J. Appl. Mech
.,
53
(4), pp. 855–863.
24.
Simo
,
J. C.
, and
Vu-Quoc
,
L.
,
1986
, “
A Three-Dimensional Finite-Strain Rod Model—Part II: Computational Aspects
,”
Comput. Methods Appl. Mech. Eng.
,
58
(
1
), pp.
79
116
.
25.
Slabaugh
,
G. G.
,
1999
, “
Computing Euler Angles From a Rotation Matrix
,” Accessed May 5, 2019, http://www.gregslabaugh.net/publications/euler.pdf
26.
Vukelic
,
G.
, and
Brcic
,
M.
,
2016
, “
Failure Analysis of a Motor Vehicle Coil Spring
,”
Procedia Struct. Integr.
,
2
, pp.
2944
2950
.
27.
Ding
,
J.
,
Wallin
,
M.
,
Wei
,
C.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.
28.
Zheng
,
Y.
,
Shabana
,
A. A.
, and
Zhang
,
D.
,
2017
, “
Curvature Expressions for the Large Displacement Analysis of Planar Beam Motions
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011013
.
29.
Zheng
,
Y.
, and
Shabana
,
A. A.
,
2017
, “
A Two-Dimensional Shear Deformable ANCF Consistent Rotation-Based Formulation Beam Element
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1031
1043
.
30.
Shabana
,
A. A.
,
2015
, “
ANCF Consistent Rotation-Based Finite Element Formulation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
014502
.