Abstract

Understanding how variation impacts a multibody dynamic (MBD) system's response is important to ensure the robustness of a system. However, how the variation propagates into the MBD system is complicated because MBD systems are typically governed by a system of large differential algebraic equations. This paper presents a novel process, variational work, along with the polynomial chaos multibody dynamics (PCMBoD) automation process for utilizing polynomial chaos theory (PCT) in the analysis of uncertainties in an MBD system. Variational work allows the complexity of the traditional PCT approach to be reduced. With variational work and the constrained Lagrangian formulation, the equations of motion of an MBD PCT system can be constructed using the PCMBoD automated process. To demonstrate the PCMBoD process, two examples, a mass-spring-damper and a two link slider–crank mechanism, are shown.

References

1.
Voglewede
,
P. A.
, and
Monti
,
A.
,
2006
, “
Variation Analysis of a Two Link Planar Manipulator Using Polynomial Chaos Theory
,”
ASME
Paper No. DETC2006-99170. 10.1115/DETC2006-99170
2.
Smith
,
A. H. C.
,
2007
, “
Robust and Optimal Control Using Polynomial Chaos Theory
,” Ph.D. thesis, University of South Carolina, Columbia, SC.
3.
Blanchard
,
E.
,
Sandu
,
C.
, and
Sandu
,
A.
,
2011
, “
Polynomial-Chaos-Based Numerical Method for the LQR Problem With Uncertain Parameters in the Formulation
,”
ASME
Paper No. DETC2010-28467. 10.1115/DETC2010-28467
4.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
Modeling Uncertainty in Steady State Diffusion Problems Via Generalized Polynomial Chaos
,”
Comput. Methods Appl. Mech. Eng.
,
191
(
43
), pp.
4927
4948
.10.1016/S0045-7825(02)00421-8
5.
Pulch
,
R.
,
2011
, “
Polynomial Chaos for Linear Differential Algebraic Equations With Random Parameters
,”
Int. J. Uncertainty Quantif.
,
1
(
3
), pp.
223
240
.10.1615/Int.J.UncertaintyQuantification.v1.i3.30
6.
Sandu
,
A.
,
Sandu
,
C.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties—Part I: Theoretical and Computational Aspects
,”
Multibody Syst. Dyn.
,
15
(
4
), pp.
369
391
.10.1007/s11044-006-9007-5
7.
Sandu
,
C.
,
Sandu
,
A.
, and
Ahmadian
,
M.
,
2006
, “
Modeling Multibody Systems With Uncertainties—Part II: Numerical Applications
,”
Multibody Syst. Dyn.
,
15
(
3
), pp.
241
262
.10.1007/s11044-006-9008-4
8.
Voglewede
,
P.
,
Smith
,
A. H. C.
, and
Monti
,
A.
,
2009
, “
Dynamic Performance of a SCARA Robot Manipulator With Uncertainty Using Polynomial Chaos Theory
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
206
210
.10.1109/TRO.2008.2006871
9.
Cheng
,
H.
, and
Sandu
,
A.
,
2009
, “
Efficient Uncertainty Quantification With the Polynomial Chaos Method for Stiff Systems
,”
Math. Comput. Simul.
,
79
(
11
), pp.
3278
3295
.10.1016/j.matcom.2009.05.002
10.
Poursina
,
M.
,
2016
, “
Extended Divide-and-Conquer Algorithm for Uncertainty Analysis of Multibody Systems in Polynomial Chaos Expansion Framework
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031015
.10.1115/1.4031573
11.
Hosder
,
S.
,
Walters
,
R.
, and
Balch
,
M.
,
2007
, “
Efficient Sampling for Non-Intrusive Polynomial Chaos Applications With Multiple Uncertain Input Variables
,”
AIAA
Paper No. 2007-1939. 10.2514/6.2007-1939
12.
Xiu
,
D.
, and
Karniadakis
,
G. E.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
13.
Kewlani
,
G.
,
Crawford
,
J.
, and
Iagnemma
,
K.
,
2012
, “
A Polynomial Chaos Approach to the Analysis of Vehicle Dynamics Under Uncertainty
,”
Veh. Syst. Dyn.
,
50
(
5
), pp.
749
774
.10.1080/00423114.2011.639897
14.
Debusschere
,
B. J.
,
Najm
,
H. N.
,
Pébay
,
P. P.
,
Knio
,
O. M.
,
Ghanem
,
R. G.
, and
Le Maitre
,
O. P.
,
2004
, “
Numerical Challenges in the Use of Polynomial Chaos Representations for Stochastic Processes
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
698
719
.10.1137/S1064827503427741
15.
Haug
,
E. J.
,
1989
,
Computer Aided Kinematics and Dynamics of Mechanical Systems: Basic Methods
, Vol.
1
,
Allyn & Bacon
,
Needham Heights, MA
.
16.
Ryan
,
P. S.
,
2018
, “
Automating the Analysis of Uncertainty in Multi-Body Dynamic Systems Using Polynomial Chaos Theory
,”
Ph.D. thesis
, Marquette University, Milwaukee, WI.https://epublications.marquette.edu/cgi/viewcontent.cgi?article=1848&context=dissertations_mu
17.
Xiu
,
D.
,
2010
,
Numerical Methods for Stochastic Computations: A Spectral Method Approach
,
Princeton University Press
,
Princeton, NJ
.
18.
Ryan
,
P. S.
,
Baxter
,
S.
, and
Voglewede
,
P. A.
,
2017
, “
Variational Analysis of a Two Link Slider-Crank Mechanism Using Polynomial Chaos Theory
,”
ASME
Paper No. DETC2017-67328. 10.1115/DETC2017-67328
You do not currently have access to this content.