Abstract

Control of chaos generally refers to realize a desired behavior of chaotic system output and its states. In this manner, we design a fractional high-order differential feedback controller (FHODFC) to increase tracking performance of a nonlinear system output and its differentials for a desired trajectory signal. The proposed controller is based on fractional calculus and high-order extracted differentials of error signal. The suggested fractional approach is applied to a single-input–single-output affine Duffing-Holmes dynamical system in matlab/simulink environment. Duffing-Holmes system is analyzed for two different problems: estimation and control problems. The simulation results clearly demonstrate superior dynamic behavior of the FHODFC compared to the classical high-order differential feedback controller (HODFC) version for both estimation and control problems.

References

1.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), p.
1196
.10.1103/PhysRevLett.64.1196
2.
Zhang
,
H.
,
Liu
,
D.
, and
Wang
,
Z.
,
2009
,
Controlling Chaos: Suppression, Synchronization and Chaotification
,
Springer Science & Business Media
, London.
3.
Pyragas
,
K.
,
1992
, “
Continuous Control of Chaos by Self-Controlling Feedback
,”
Phys. Lett. A
,
170
(
6
), pp.
421
428
.10.1016/0375-9601(92)90745-8
4.
Cho
,
S.-J.
,
Jin
,
M.
,
Kuc
,
T.-Y.
, and
Lee
,
J. S.
,
2014
, “
Control and Synchronization of Chaos Systems Using Time-Delay Estimation and Supervising Switching Control
,”
Nonlinear Dyn.
,
75
(
3
), pp.
549
560
.10.1007/s11071-013-1084-4
5.
Hua
,
C.
, and
Guan
,
X.
,
2004
, “
Adaptive Control for Chaotic Systems
,”
Chaos, Solitons Fractals
,
22
(
1
), pp.
55
60
.10.1016/j.chaos.2003.12.071
6.
Jeong
,
S.
,
Ji
,
D.
,
Park
,
J. H.
, and
Won
,
S.
,
2013
, “
Adaptive Synchronization for Uncertain Complex Dynamical Network Using Fuzzy Disturbance Observer
,”
Nonlinear Dyn.
,
71
(
1–2
), pp.
223
234
.10.1007/s11071-012-0654-1
7.
Li
,
X.-J.
, and
Yang
,
G.-H.
,
2017
, “
Fuzzy Approximation-Based Global Pinning Synchronization Control of Uncertain Complex Dynamical Networks
,”
IEEE Trans. Cybern.
,
47
(
4
), pp.
873
883
.10.1109/TCYB.2016.2530792
8.
Gholami
,
A.
, and
Markazi
,
A. H.
,
2012
, “
A New Adaptive Fuzzy Sliding Mode Observer for a Class of Mimo Nonlinear Systems
,”
Nonlinear Dyn.
,
70
(
3
), pp.
2095
2105
.10.1007/s11071-012-0602-0
9.
Pan
,
I.
,
Korre
,
A.
,
Das
,
S.
, and
Durucan
,
S.
,
2012
, “
Chaos Suppression in a Fractional Order Financial System Using Intelligent Regrouping PSO Based Fractional Fuzzy Control Policy in the Presence of Fractional Gaussian Noise
,”
Nonlinear Dyn.
,
70
(
4
), pp.
2445
2461
.10.1007/s11071-012-0632-7
10.
Lin
,
C.-T.
, and
Jou
,
C.-P.
,
1999
, “
Controlling Chaos by GA-Based Reinforcement Learning Neural Network
,”
IEEE Trans. Neural Networks
,
10
(
4
), pp.
846
859
. 10.1109/72.774236
11.
Yu
,
J.
,
Yu
,
H.
,
Chen
,
B.
,
Gao
,
J.
, and
Qin
,
Y.
,
2012
, “
Direct Adaptive Neural Control of Chaos in the Permanent Magnet Synchronous Motor
,”
Nonlinear Dynamics
,
70
(
3
), pp.
1879
1887
.10.1007/s11071-012-0580-2
12.
Das
,
S.
,
Acharya
,
A.
, and
Pan
,
I.
,
2014
, “
Simulation Studies on the Design of Optimum PID Controllers to Suppress Chaotic Oscillations in a Family of Lorenz-Like Multi-Wing Attractors
,”
Math. Comput. Simul.
,
100
, pp.
72
87
.10.1016/j.matcom.2014.03.002
13.
Bucci
,
M. A.
,
Semeraro
,
O.
,
Allauzen
,
A.
,
Wisniewski
,
G.
,
Cordier
,
L.
, and
Mathelin
,
L.
,
2019
, “
Control of Chaotic Systems by Deep Reinforcement Learning
,” preprint
arXiv:1906.07672
.https://arxiv.org/abs/1906.07672
14.
Song
,
C.
,
Fei
,
S.
,
Cao
,
J.
, and
Huang
,
C.
,
2019
, “
Robust Synchronization of Fractional-Order Uncertain Chaotic Systems Based on Output Feedback Sliding Mode Control
,”
Mathematics
,
7
(
7
), p.
599
.10.3390/math7070599
15.
Liu
,
B.
,
Sun
,
Z.
,
Luo
,
Y.
, and
Zhong
,
Y.
,
2019
, “
Uniform Synchronization for Chaotic Dynamical Systems Via Event-Triggered Impulsive Control
,”
Phys. A: Stat. Mech. Appl.
,
531
, p.
121725
.10.1016/j.physa.2019.121725
16.
Chen
,
G.
, and
Yu
,
X.
,
2003
,
Chaos Control: Theory and Applications
, Vol.
292
,
Springer Science & Business Media
, Berlin.
17.
Haghighatnia
,
S.
,
Toossian Shandiz
,
H.
, and
Alfi
,
A.
,
2019
, “
Conformable Fractional Order Sliding Mode Control for a Class of Fractional Order Chaotic Systems
,”
Iran. J. Electr. Electron. Eng.
,
2
(
3
), pp.
177
188
.10.22111/IECO.2018.25403.1049
18.
Boubellouta
,
A.
, and
Boulkroune
,
A.
,
2019
, “
Intelligent Fractional-Order Control-Based Projective Synchronization for Chaotic Optical Systems
,”
Soft Comput.
,
23
(
14
), pp.
5367
5384
.10.1007/s00500-018-3490-5
19.
Rabah
,
K.
,
Ladaci
,
S.
, and
Lashab
,
M.
,
2018
, “
Bifurcation-Based Fractional-Order PIλ Dμ Controller Design Approach for Nonlinear Chaotic Systems
,”
Front. Inf. Technol. Electron. Eng.
,
19
(
2
), pp.
180
191
.10.1631/FITEE.1601543
20.
Ladaci
,
S.
,
Rabah
,
K.
, and
Lashab
,
M.
,
2018
, “
Robust Synchronization of Fractional-Order Arneodo Chaotic Systems Using a Fractional Sliding Mode Control Strategy
,” Advanced Synchronization Control and Bifurcation of Chaotic Fractional-Order Systems, IGI Global, Hershey, PA, pp.
1
22
.
21.
Rabah
,
K.
, and
Ladaci
,
S.
,
2019
, “
A Fractional Adaptive Sliding Mode Control Configuration for Synchronizing Disturbed Fractional-Order Chaotic Systems
,”
Circuits, Syst. Signal Process
.
, pp.
1
21
.10.1007/s00034-019-01205-y
22.
Chen
,
D.-Y.
,
Liu
,
Y.-X.
,
Ma
,
X.-Y.
, and
Zhang
,
R.-F.
,
2012
, “
Control of a Class of Fractional-Order Chaotic Systems Via Sliding Mode
,”
Nonlinear Dyn.
,
67
(
1
), pp.
893
901
.10.1007/s11071-011-0002-x
23.
Wang
,
Z.
,
Liu
,
J.
,
Zhang
,
F.
, and
Leng
,
S.
,
2019
, “
Hidden Chaotic Attractors and Synchronization for a New Fractional-Order Chaotic System
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
8
), p.
081010
.10.1115/1.4043670
24.
Azar
,
A. T.
,
Vaidyanathan
,
S.
, and
Ouannas
,
A.
,
2017
,
Fractional Order Control and Synchronization of Chaotic Systems
, Vol.
688
,
Springer
, Cham, Switzerland.
25.
Qi
,
G.
,
Chen
,
Z.
, and
Yuan
,
Z.
,
2005
, “
Model-Free Control of Affine Chaotic Systems
,”
Phys. Lett. A
,
344
(
2–4
), pp.
189
202
.10.1016/j.physleta.2005.06.073
26.
Agee
,
J. T.
,
Bingul
,
Z.
, and
Kizir
,
S.
,
2015
, “
Higher-Order Differential Feedback Control of a Flexible-Joint Manipulator
,”
J. Vib. Control
,
21
(
10
), pp.
1976
1986
.10.1177/1077546313504979
27.
Agee
,
J. T.
,
Bingul
,
Z.
, and
Kizir
,
S.
,
2017
, “
Trajectory and Vibration Control of a Single-Link Flexible-Joint Manipulator Using a Distributed Higher-Order Differential Feedback Controller
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
8
), p.
081006
.10.1115/1.4035873
28.
Du
,
S.
,
van Wyk
,
B. J.
,
Qi
,
G.
, and
Tu
,
C.
,
2009
, “
Chaotic System Synchronization With an Unknown Master Model Using a Hybrid HOD Active Control Approach
,”
Chaos, Solitons Fractals
,
42
(
3
), pp.
1900
1913
.10.1016/j.chaos.2009.03.101
29.
Nyabundi
,
S.
,
Qi
,
G.
,
Hamam
,
Y.
, and
Munda
,
J.
,
2009
, “
DC Motor Control Via High Order Differential Feedback Control
,” IEEE AFRICON (
AFRICON'09
), Nairobi, Kenya, Sept. 23–25, pp.
1
5
.10.1109/AFRCON.2009.5308165
30.
Shi
,
X-M.
,
Dai
,
Y.
,
Liu
,
Z-h.
, and
G.-y
,
Q.
,
2010
, “
High Order Differential Feedback Controller and Its Application in Servo Control System of NC Machine Tools
,” International Conference on System Science, Engineering Design and Manufacturing Informatization (
ICSEM
), Vol.
1
,
Yichang, China
, Nov. 12–14, pp.
241
244
.10.1109/ICSEM.2010.72
31.
Faradja
,
P.
, and
Qi
,
G.
,
2015
, “
Robustness Based Comparison Between a Sliding Mode Controller and a Model Free Controller With the Approach of Synchronization of Nonlinear Systems
,”
15th International Conference on Control, Automation and Systems
(
ICCAS
),
Busan, South Korea, Oct. 13–16, pp.
36
40
.10.1109/ICCAS.2015.7364875
32.
Xue
,
W.
,
Xue
,
Y.
,
Qi
,
G.
,
Gao
,
J.
, and
Zheng
,
S.
,
2007
, “
Study of High Order Differential Feedback Control of dc-Link Voltage in Active Power Filter
,”
IEEE
International Conference on Automation and Logistics,
Jinan, China, Aug. 18–21, pp.
1063
1066
.10.1109/ICAL.2007.4338725
33.
Wei
,
X.
,
Jingjing
,
M.
,
Hongyan
,
J.
, and
Fei
,
Y.
,
2010
, “
The Main Steam Temperature Cascade Control of High Order Differential of Feedback Controller
,” IEEE
International Conference on Intelligent System Design and Engineering Application
(
ISDEA
), Vol.
2
,
Changsha, China, Oct. 13–14, pp.
683
687
.10.1109/ISDEA.2010.68
34.
Tavazoei
,
M. S.
,
2014
, “
Time Response Analysis of Fractional-Order Control Systems: A Survey on Recent Results
,”
Fractional Calculus Appl. Anal.
,
17
(
2
), pp.
440
461
.10.2478/s13540-014-0179-z
35.
Oustaloup
,
A.
,
Levron
,
F.
,
Mathieu
,
B.
, and
Nanot
,
F. M.
,
2000
, “
Frequency-Band Complex Noninteger Differentiator: Characterization and Synthesis
,”
IEEE Trans. Circuits Syst. I: Fundam. Theory Appl.
,
47
(
1
), pp.
25
39
.10.1109/81.817385
36.
Oustaloup
,
A.
,
Moreau
,
X.
, and
Nouillant
,
M.
,
1996
, “
The Crone Suspension
,”
Control Eng. Pract.
,
4
(
8
), pp.
1101
1108
.10.1016/0967-0661(96)00109-8
37.
Solak
,
E.
,
Morgül
,
Ö.
, and
Ersoy
,
U.
,
2001
, “
Observer-Based Control of a Class of Chaotic Systems
,”
Phys. Lett. A
,
279
(
1–2
), pp.
47
55
.10.1016/S0375-9601(00)00808-2
38.
Qi
,
G.
,
Chen
,
Z.
, and
Yuan
,
Z.
,
2008
, “
Adaptive High Order Differential Feedback Control for Affine Nonlinear System
,”
Chaos, Solitons Fractals
,
37
(
1
), pp.
308
315
.10.1016/j.chaos.2006.09.027
You do not currently have access to this content.