Abstract

An influence of random disturbances on the pattern formation in reaction–diffusion systems is studied. As a basic model, we consider the distributed Brusselator with one spatial variable. A coexistence of the stationary nonhomogeneous spatial structures in the zone of Turing instability is demonstrated. A numerical parametric analysis of shapes, sizes of deterministic pattern–attractors, and their bifurcations is presented. Investigating the corporate influence of the multistability and stochasticity, we study phenomena of noise-induced transformation and generation of patterns.

References

1.
Nicolis
,
G.
, and
Prigogine
,
I.
,
1977
,
Self-Organization in Nonequilibrium Systems
,
Wiley
,
New York
.
2.
Cross
,
M. C.
, and
Hohenberg
,
P. C.
,
1993
, “
Pattern Formation Outside of Equilibrium
,”
Rev. Mod. Phys.
,
65
(
3
), pp.
851
1123
.10.1103/RevModPhys.65.851
3.
Levin
,
S.
,
1992
, “
The Problem of Pattern and Scale in Ecology: The Robert H. MacArthur; Award Lecture
,”
Ecology
,
73
(
6
), pp.
1943
1967
.10.2307/1941447
4.
Koch
,
A. J.
, and
Meinhardt
,
H.
,
1994
, “
Biological Pattern Formation: From Basic Mechanisms to Complex Structures
,”
Rev. Mod. Phys.
,
66
(
4
), p.
1481
.10.1103/RevModPhys.66.1481
5.
Ball
,
P.
, and
Borley
,
N.
,
1999
,
The Self-Made Tapestry: Pattern Formation in Nature
,
Oxford University Press
,
Oxford, UK
.
6.
Murray
,
J. D.
,
2001
,
Mathematical Biology. II Spatial Models and Biomedical Applications
,
Springer-Verlag
,
New York
.
7.
Dangelmayr
,
G.
, and
Oprea
,
I.
,
2004
,
“Dynamics and Bifurcation of Patterns in Dissipative Systems,”
World Scientific
,
Singapore
.
8.
Meron
,
E.
,
2015
,
Nonlinear Physics of Ecosystems
,
CRC Press
,
Boca Raton, FL
.
9.
Turing
,
A. M.
,
1952
, “
The Chemical Basis of Morphogenesis
,”
Philos. Trans. R. Soc. Lond. B. Biol. Sci.
,
237
(
641
), pp.
37
72
.10.1098/rstb.1952.0012
10.
Newell
,
A. C.
, and
Whitehead
,
J. A.
,
1969
, “
Finite Bandwidth, Finite Amplitude Convection
,”
J. Fluid Mech.
,
38
(
2
), pp.
279
303
.10.1017/S0022112069000176
11.
Bucetaa
,
J.
,
Lindenberg
,
K.
, and
Parrondo
,
J. M. R.
,
2002
, “
Pattern Formation Induced by Nonequilibrium Global Alternation of Dynamics
,”
Phys. Rev. E
,
66
, p.
036216
.10.1103/PhysRevE.66.036216
12.
Chen
,
Y.
, and
Buceta
,
J.
,
2019
, “
A Non-Linear Analysis of Turing Pattern Formation
,”
PLoS ONE
,
14
(
8
), p.
0220994
.10.1371/journal.pone.0220994
13.
Horsthemke
,
W.
, and
Lefever
,
R.
,
1984
,
Noise-Induced Transitions
,
Springer
,
Berlin
.
14.
McDonnell
,
M.
,
2008
,
Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization
,
Cambridge University Press
,
Cambridge
.
15.
Arnold
,
L.
,
1998
,
Random Dynamical Systems
,
Springer
,
Berlin
.
16.
Gao
,
J. B.
,
Hwang
,
S. K.
, and
Liu
,
J. M.
,
1999
, “
When Can Noise Induce Chaos?
,”
Phys. Rev. Lett.
,
82
(
6
), p.
1132
.10.1103/PhysRevLett.82.1132
17.
Garcia-Ojalvo
,
J.
, and
Sancho
,
J. M.
,
1999
,
Noise in Spatially Extended Systems
,
Springer
,
New York
.
18.
Kurushina
,
S. E.
,
Maximov
,
V. V.
, and
Romanovskii
,
Y. M.
,
2012
, “
Spatial Pattern Formation in External Noise: Theory and Simulation
,”
Phys. Rev. E
,
86
(
1
), p.
011124
.10.1103/PhysRevE.86.011124
19.
Bonachela
,
J. A.
,
Munoz
,
M. A.
, and
Levin
,
S. A.
,
2012
, “
Patchiness and Demographic Noise in Three Ecological Examples
,”
J. Stat. Phys.
,
148
(
4
), pp.
723
739
.10.1007/s10955-012-0506-x
20.
Dobramysl
,
U.
,
Mobilia
,
M.
,
Pleimling
,
M.
, and
Tauber
,
U.
,
2018
, “
Stochastic Population Dynamics in Spatially Extended Predator-Prey Systems
,”
J. Phys. A: Math. Theor.
,
51
(
6
), p.
063001
.10.1088/1751-8121/aa95c7
21.
Serrao
,
S. R.
, and
Tauber
,
U. C.
,
2017
, “
A Stochastic Analysis of the Spatially Extended May-Leonard Model
,”
J. Phys. A: Math. Theor.
,
50
(
40
), p.
404005
.10.1088/1751-8121/aa87a8
22.
Segev
,
R.
,
Shapira
,
Y.
,
Benveniste
,
M.
, and
Ben-Jacob
,
E.
,
2001
, “
Observations and Modeling of Synchronized Bursting in Two-Dimensional Neural Networks
,”
Phys. Rev. E
,
64
(
1
), p.
011290
.10.1103/PhysRevE.64.011920
23.
Hausenblas
,
E.
,
Randrianasolo
,
T. A.
, and
Thalhammer
,
M.
,
2020
, “
Theoretical Study and Numerical Simulation of Pattern Formation in the Deterministic and Stochastic Grayscott Equations
,”
J. Comput. Appl. Math.
,
364
, p.
112335
.10.1016/j.cam.2019.06.051
24.
Garcia-Ojalvo
,
J.
,
Hernandez-Machado
,
A.
, and
Sancho
,
J. M.
,
1993
, “
Effects of External Noise on the Swift-Hohenberg Equation
,”
Phys. Rev. Lett.
,
71
, pp.
1542
1545
.10.1103/PhysRevLett.71.1542
25.
Zaikin
,
A. A.
, and
Schimansky-Geier
,
L.
,
1998
, “
Spatial Patterns Induced by Additive Noise
,”
Phys. Rev. E
,
58
(
4
), pp.
4355
4360
.10.1103/PhysRevE.58.4355
26.
Sanz-Anchelergues
,
A.
,
Zhabotinsky
,
A. M.
,
Epstein
,
I. R.
, and
Muñuzuri
,
A. P.
,
2001
, “
Turing Pattern Formation Induced by Spatially Correlated Noise
,”
Phys. Rev. E
,
63
(
5
), p.
056124
.10.1103/PhysRevE.63.056124
27.
Biancalani
,
T.
,
Jafarpour
,
F.
, and
Goldenfeld
,
N.
,
2017
, “
Giant Amplification of Noise in Fluctuation-Induced Pattern Formation
,”
Phys. Rev. Lett.
,
118
(
1
), p.
018101
.10.1103/PhysRevLett.118.018101
28.
Zimmermann
,
M. G.
,
Toral
,
R.
,
Piro
,
O.
, and
Miguel
,
M. S.
,
2000
, “
Stochastic Spatiotemporal Intermittency and Noise-Induced Transition to an Absorbing Phase
,”
Phys. Rev. Lett.
,
85
(
17
), pp.
3612
3615
.10.1103/PhysRevLett.85.3612
29.
Gasner
,
S.
,
Blomgren
,
P.
, and
Palacios
,
A.
,
2007
, “
Noise-Induced Intermittency in Cellular Pattern-Forming Systems
,”
Int. J. Bifurcation Chaos
,
17
(
8
), pp.
2765
2779
.10.1142/S0218127407018749
30.
George
,
N. B.
,
Unni
,
V. R.
,
Raghunathan
,
M.
, and
Sujith
,
R. I.
,
2018
, “
Pattern Formation During Transition From Combustion Noise to Thermoacoustic Instability Via Intermittency
,”
J. Fluid Mech.
,
849
, pp.
615
644
.10.1017/jfm.2018.427
31.
Neiman
,
A.
,
Pei
,
X.
,
Russell
,
D.
,
Wojtenek
,
W.
,
Wilkens
,
L.
,
Moss
,
F.
,
Braun
,
H. A.
,
Huber
,
M. T.
, and
Voigt
,
K.
,
1999
, “
Synchronization of the Noisy Electrosensitive Cells in the Paddlefish
,”
Phys. Rev. Lett.
,
82
(
3
), p.
660
.10.1103/PhysRevLett.82.660
32.
Emenheiser
,
J.
,
Chapman
,
A.
,
Pósfai
,
M.
,
Crutchfield
,
J. P.
,
Mesbahi
,
M.
, and
D'Souza
,
R. M.
,
2016
, “
Patterns of Patterns of Synchronization: Noise Induced Attractor Switching in Rings of Coupled Nonlinear Oscillators
,”
Chaos
,
26
(
9
), p.
094816
.10.1063/1.4960191
33.
Riaz
,
S. S.
,
Dutta
,
S.
,
Kar
,
S.
, and
Ray
,
D. S.
,
2005
, “
Pattern Formation Induced by Additive Noise: A Moment-Based Analysis
,”
Eur. Phys. J. B.
,
47
(
2
), p.
255
.10.1140/epjb/e2005-00314-1
34.
Hutt
,
A.
,
Longtin
,
A.
, and
Schimansky-Geier
,
L.
,
2008
, “
Additive Noise-Induced Turing Transitions in Spatial Systems With Application to Neural Fields and the Swift–Hohenberg Equation
,”
Phys. D
,
237
(
6
), pp.
755
773
.10.1016/j.physd.2007.10.013
35.
Prigogine
,
I.
, and
Lefever
,
R.
,
1968
, “
Symmetry Breaking Instabilities in Dissipative Systems—II
,”
J. Chem. Phys.
,
48
(
4
), p.
1695
.10.1063/1.1668896
36.
Peng
,
R.
, and
Wang
,
M.
,
2005
, “
Pattern Formation in the Brusselator System
,”
J. Math. Anal. Appl.
,
309
(
1
), pp.
151
166
.10.1016/j.jmaa.2004.12.026
37.
Gambino
,
G.
,
Lombardo
,
M. C.
,
Sammartino
,
M.
, and
Sciacca
,
V.
,
2013
, “
Turing Pattern Formation in the Brusselator System With Nonlinear Diffusion
,”
Phys. Rev. E
,
88
(
4
), p.
042925
.10.1103/PhysRevE.88.042925
38.
Alqahtani
,
A. M.
,
2018
, “
Numerical Simulation to Study the Pattern Formation of Reaction–Diffusion Brusselator Model Arising in Triple Collision and Enzymatic
,”
J. Math. Chem.
,
56
(
6
), pp.
1543
1566
.10.1007/s10910-018-0859-8
39.
Díaz-Hernández
,
O.
,
Ramírez-Álvarez
,
E.
,
Flores-Rosas
,
A.
,
Enriquez-Flores
,
C. I.
,
Santillán
,
M.
,
Padilla-Longoria
,
P.
, and
Santos
,
G. J. E.
,
2019
, “
Amplitude Death Induced by Intrinsic Noise in a System of Three Coupled Stochastic Brusselators
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
4
), p.
041004
.10.1115/1.4042322
You do not currently have access to this content.