Abstract

This paper investigates the nonlinear vibration of an axially accelerating moving plate considering fluid–structure interaction. Nonlinear coupled equations of motion are derived by means of Kármán plate theory, the Galerkin method is then applied to transform the nonlinear partial differential equations into nonlinear ordinary differential equations. The steady-state response, various bifurcations, and chaotic behavior of the system are studied by the multiple scales method and Runge–Kutta method. The dynamical characteristics of the system are examined via response curves and bifurcation diagrams of Poincaré maps. By three-dimension bifurcation diagrams, change of motion state can be easily observed along with the variation of system parameters during the whole parametric space; meanwhile, it is found that fluctuation amplitude plays a most significant role in the change of motion state for the fluid–structure coupling system.

References

1.
Li
,
C. C.
,
1997
, “
Stability and Vibration Characteristics  of Axially Moving Plates
,”
Int. J. Solids Struct.
,
34
(
24
), pp.
3179
3190
.10.1016/S0020-7683(96)00181-3
2.
Chen
,
L. Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
ASME Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
.10.1115/1.1849169
3.
Saksa
,
T.
,
Banichuk
,
N.
,
Jeronen
,
J.
,
Kurki
,
M.
, and
Tuovinen
,
T.
,
2012
, “
Dynamic Analysis for Axially Moving Viscoelastic Panels
,”
Int. J. Solids Struct.
,
49
(
23–24
), pp.
3355
3366
.10.1016/j.ijsolstr.2012.07.017
4.
Kesimli
,
A.
,
Özkaya
,
E.
, and
Bağdatli
,
S. M.
,
2015
, “
Nonlinear Vibrations of Spring-Supported Axially Moving String
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1523
1534
.10.1007/s11071-015-2086-1
5.
Pellicano
,
F.
, and
Vestroni
,
F.
,
2000
, “
Nonlinear Dynamics and Bifurcations of an Axially Moving Beam
,”
ASME J. Vib. Acoust.
,
122
(
1
), pp.
21
30
.10.1115/1.568433
6.
Pellicano
,
F.
, and
Vestroni
,
F.
,
2002
, “
Complex Dynamics of High-Speed Axially Moving Systems
,”
J. Sound Vib.
,
258
(
1
), pp.
31
44
.10.1006/jsvi.2002.5070
7.
Ding
,
H.
, and
Chen
,
L. Q.
,
2010
, “
Galerkin Methods for Natural Frequencies of High-Speed Axially Moving Beams
,”
J. Sound Vib.
,
329
(
17
), pp.
3484
3494
.10.1016/j.jsv.2010.03.005
8.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Li
,
W. H.
, and
Chen
,
S. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
.10.1016/j.jsv.2010.04.037
9.
Zhang
,
G. C.
,
Ding
,
H.
,
Chen
,
L. Q.
, and
Yang
,
S. P.
,
2012
, “
Galerkin Method for Steady-State Response of Nonlinear Forced Vibration of Axially Moving Beams at Supercritical Speeds
,”
J. Sound Vib.
,
331
(
7
), pp.
1612
1623
.10.1016/j.jsv.2011.12.004
10.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Farokhi
,
H.
,
2013
, “
Coupled Global Dynamics of an Axially Moving Viscoelastic Beam
,”
Int. J. Non-Linear Mech.
,
51
, pp.
54
74
.10.1016/j.ijnonlinmec.2012.12.008
11.
Ghayesh
,
M. H.
,
Amabili
,
M.
, and
Païdoussis
,
M. P.
,
2013
, “
Nonlinear Dynamics of Axially Moving Plates
,”
J. Sound Vib.
,
332
(
2
), pp.
391
406
.10.1016/j.jsv.2012.08.013
12.
Yang
,
X. D.
, and
Zhang
,
W.
,
2014
, “
Nonlinear Dynamics of Axially Moving Beam With Coupled Longitudinal-Transversal Vibrations
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2547
2556
.10.1007/s11071-014-1609-5
13.
Mao
,
X. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2017
, “
Forced Vibration of Axially Moving Beam With Internal Resonance in the Supercritical Regime
,”
Int. J. Mech. Sci.
,
131–132
, pp.
81
94
.10.1016/j.ijmecsci.2017.06.038
14.
Öz
,
H. R.
,
Pakdemirli
,
M.
, and
Boyaci
,
H.
,
2001
, “
Non-Linear Vibrations and Stability of an Axially Moving Beam With Time-Dependent Velocity
,”
Int. J. Non-Linear Mech.
,
36
(
1
), pp.
107
115
.10.1016/S0020-7462(99)00090-6
15.
Özkaya
,
E.
, and
Pakdemirli
,
M.
,
2000
, “
Vibrations of an Axially Accelerating Beam With Small Flexural Stiffness
,”
J. Sound Vib.
,
234
(
3
), pp.
521
535
.10.1006/jsvi.2000.2890
16.
Chen
,
L. Q.
, and
Yang
,
X. D.
,
2005
, “
Stability in Parametric Resonance of Axially Moving Viscoelastic Beams With Time-Dependent Speed
,”
J. Sound Vib.
,
284
(
3–5
), pp.
879
891
.10.1016/j.jsv.2004.07.024
17.
Suweken
,
G.
, and
Van Horssen
,
W. T.
,
2003
, “
On the Weakly Nonlinear, Transversal Vibrations of a Conveyor Belt With a Low and Time-Varying Velocity
,”
Nonlinear Dyn.
,
31
(
2
), pp.
197
223
.10.1023/A:1022053131286
18.
Ponomareva
,
S. V.
, and
Van Horssen
,
W. T.
,
2007
, “
On Transversal Vibrations of an Axially Moving String With a Time-Varying Velocity
,”
Nonlinear Dyn.
,
50
(
1–2
), pp.
315
323
.10.1007/s11071-006-9160-7
19.
Sahoo
,
B.
,
Panda
,
L. N.
, and
Pohit
,
G.
,
2016
, “
Combination, Principal Parametric and Internal Resonances of an Accelerating Beam Under Two Frequency Parametric Excitation
,”
Int. J. Non-Linear Mech.
,
78
, pp.
35
44
.10.1016/j.ijnonlinmec.2015.09.017
20.
Yang
,
X. D.
, and
Chen
,
L. Q.
,
2006
, “
Stability in Parametric Resonance of Axially Accelerating Beams Constituted by Boltzmann's Superposition Principle
,”
J. Sound Vib.
,
289
(
1–2
), pp.
54
65
.10.1016/j.jsv.2005.01.035
21.
Tang
,
Y. Q.
,
Chen
,
L. Q.
, and
Yang
,
X. D.
,
2009
, “
Parametric Resonance of Axially Moving Timoshenko Beams With Time-Dependent Speed
,”
Nonlinear Dyn.
,
58
(
4
), pp.
715
724
.10.1007/s11071-009-9512-1
22.
Tang
,
Y. Q.
,
Zhang
,
D. B.
, and
Gao
,
J. M.
,
2016
, “
Parametric and Internal Resonance of Axially Accelerating Viscoelastic Beams With the Recognition of Longitudinally Varying Tensions
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
401
418
.10.1007/s11071-015-2336-2
23.
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Steady-State Transverse Response of an Axially Moving Beam With Time-Dependent Axial Speed
,”
Int. J. Non-Linear Mech.
,
49
, pp.
40
49
.10.1016/j.ijnonlinmec.2012.08.003
24.
Yan
,
Q. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2014
, “
Periodic Responses and Chaotic Behaviors of an Axially Accelerating Viscoelastic Timoshenko Beam
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1577
1591
.10.1007/s11071-014-1535-6
25.
Lv
,
H. W.
,
Li
,
L.
, and
Li
,
Y. H.
,
2018
, “
Non-Linearly Parametric Resonances of an Axially Moving Viscoelastic Sandwich Beam With Time-Dependent Velocity
,”
Appl. Math. Modell.
,
53
, pp.
83
105
.10.1016/j.apm.2017.05.048
26.
Zhu
,
B.
,
Dong
,
Y. H.
, and
Li
,
Y. H.
,
2018
, “
Nonlinear Dynamics of a Viscoelastic Sandwich Beam With Parametric Excitations and Internal Resonance
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2575
2612
.10.1007/s11071-018-4511-8
27.
Sahoo
,
B.
,
2019
, “
Nonlinear Dynamics of a Viscoelastic Traveling Beam With Time-Dependent Axial Velocity and Variable Axial Tension
,”
Nonlinear Dyn.
,
97
(
1
), pp.
269
296
.10.1007/s11071-019-04969-9
28.
Shibli
,
S. M. A.
,
Meena
,
B. N.
, and
Remya
,
R.
,
2015
, “
A Review on Recent Approaches in the Field of Hot Dip Zinc Galvanizing Process
,”
Surf. Coat. Technol.
,
262
, pp.
210
215
.10.1016/j.surfcoat.2014.12.054
29.
Li
,
P.
, and
Chen
,
H.
,
2013
, “
Vibration Analysis of Steel Strip in Continuous Hot-Dip Galvanizing Process
,”
J. Appl. Math. Phys.
,
01
(
6
), pp.
31
36
.10.4236/jamp.2013.16007
30.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1990
, “
Nonlinear Oscillations of a Harmonically Excited Composite Structure
,”
Compos. Struct.
,
16
(
4
), pp.
323
339
.10.1016/0263-8223(90)90040-L
31.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1990
, “
Experimental Investigation of Resonantly Forced Oscillations of a Two-Degree-of-Freedom Structure
,”
Int. J. Non-Linear Mech.
,
25
(
2–3
), pp.
199
209
.10.1016/0020-7462(90)90051-A
32.
Anderson
,
T. J.
,
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1994
, “
Nonlinear Resonances in a Flexible Cantilever Beam
,”
ASME J. Vib. Acoust.
,
116
(
4
), pp.
480
484
.10.1115/1.2930452
33.
Li
,
J.
,
Guo
,
X. H.
,
Luo
,
J.
,
Li
,
H. Y.
, and
Wang
,
Y. Q.
,
2013
, “
Analytical Study on Inherent Properties of a Unidirectional Vibrating Steel Strip Partially Immersed in Fluid
,”
Shock Vib.
,
20
(
4
), pp.
793
807
.10.1155/2013/827596
34.
Li
,
H. Y.
,
Li
,
J.
, and
Liu
,
Y. J.
,
2015
, “
Internal Resonance of an Axially Moving Unidirectional Plate Partially Immersed in Fluid Under Foundation Displacement Excitation
,”
J. Sound Vib.
,
358
, pp.
124
141
.10.1016/j.jsv.2015.07.030
You do not currently have access to this content.