Abstract

Four formulations of nonholonomic mechanical system dynamics, with both holonomic and differential constraints, are presented and shown to be well posed; i.e., solutions exist, are unique, and depend continuously on problem data. They are (1) the d'Alembert variational formulation, (2) a broadly applicable manifold theoretic extension of Maggi's equations that is a system of first-order ordinary differential equations (ODE), (3) Lagrange multiplier-based index 3 differential-algebraic equations (index 3 DAE), and (4) Lagrange multiplier-based index 0 differential-algebraic equations (index 0 DAE). The ODE formulation is shown to be well posed, as a direct consequence of the theory of ODE. The variational formulation is shown to be equivalent to the ODE formulation, hence also well posed. Finally, the index 3 DAE and index 0 DAE formulations are shown to be equivalent to the variational and ODE formulations, hence also well posed. These results fill a void in the literature and provide a theoretical foundation for nonholonomic mechanical system dynamics that is comparable to the theory of ODE.

References

1.
Maggi
,
G. A.
,
1896
,
Principii Della Teoria Matematica Del Movimento Dei Corpi: Corso de Meccanica Razionale
,
Ulrico Hoepli
,
Milano, Italy
.
2.
Maggi
,
G. A.
,
1901
,
Di Alcune Nuove Forme Delle Equazioni Della Dinamica Applicabili ai Sistemi Anolonomi, Rendiconti Della Regia Academia Dei Lincei, Serie V
, Vol.
X
, pp.
287
291
.
3.
Pars
,
L. A.
,
1965
,
A Treatise on Analytical Dynamics
,
Ox Bow Press
,
Woodbridge, CT
.
4.
Neimark
,
J. I.
, and
Fufaev
,
N. A.
,
1972
,
Dynamics of Nonholonomic Systems
,
American Mathematical Society
,
Providence, RI
.
5.
Soltakhanov
,
S. K.
,
Yushkov
,
M. P.
, and
Zegzhda
,
S. A.
,
2009
,
Mechanics of Non-Holonomic Systems
,
Springer-Verlag
,
Berlin
.
6.
Rabier
,
P. J.
, and
Rheinboldt
,
W. C.
,
2000
,
Nonholonomic Motion of Rigid Mechanical Systems From a DAE Viewpoint
,
SIAM
,
Philadelphia, PA
.
7.
Kane
,
T. R.
, and
Levinson
,
D. A.
,
1985
,
Dynamics: Theory and Applications
,
McGraw-Hill
,
New York
.
8.
Haug
,
E. J.
,
2018
, “
Extension of Maggi and Kane Equations to Holonomic Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
12
), p.
121003
.10.1115/1.4041579
9.
Haug
,
E. J.
,
2020
, “
Well Posed Formulations of Holonomic Mechanical System Dynamics and Design Sensitivity Analysis
,”
Mech. Based Des. Struct. Mach.
,
48
(
1
), pp.
111
121
.10.1080/15397734.2019.1668278
10.
Haug
,
E. J.
,
2017
, “
An Ordinary Differential Equation Formulation for Multibody Dynamics: Nonholonomic Constraints
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
1
), p.
011009
.10.1115/1.4034435
11.
Corwin
,
L. J.
, and
Szczarba
,
R. H.
,
1982
,
Multivariable Calculus
,
Marcel Dekker
,
New York
.
12.
Strang
,
G.
,
1980
,
Linear Algebra and Its Applications
, 2nd ed.,
Academic Press
,
New York
.
13.
Atkinson
,
K. E.
,
1989
,
An Introduction to Numerical Analysis
, 2nd ed.,
Wiley
,
New York
.
14.
Dundas
,
B. I.
,
2018
,
A Short Course in Differential Topology
,
Cambridge University Press
,
Cambridge, UK
.
15.
Borri
,
M.
,
Bottasso
,
C.
, and
Mantegazza
,
P.
,
1990
, “
Equivalence of Kane's and Maggi's
,”
Equations, Mecc.
,
25
(
4
), pp.
272
274
.10.1007/BF01559692
16.
Teschl
,
G.
,
2012
,
Ordinary Differential Equations and Dynamical Systems
,
American Math Society
,
Providence, RI
.
17.
Ascher
,
U. M.
, and
Petzold
,
L. R.
,
1998
,
Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations
,
SIAM
,
Philadelphia, PA
.
18.
Haug
,
E. J.
,
2018
, “
An Index 0 Differential-Algebraic Equation Formulation for Multibody Dynamics-Nonholonomic Constraints
,”
Mech. Based Des. Struct. Mach.
,
46
(
1
), pp.
38
65
.10.1080/15397734.2016.1273783
You do not currently have access to this content.