Abstract

In this paper, a high-dimensional system of nearest-neighbor coupled neural networks with multiple delays is proposed. Nowadays, most present researches about neural networks have studied the connection between adjacent nodes. However, in practical applications, neural networks are extremely complicated. This paper further considers that there are still connection relationships between nonadjacent nodes, which reflect the intrinsic characteristics of neural networks more accurately because of the complexity of its topology. The influences of multiple delays on the local stability and Hopf bifurcation of the system are explored by selecting the sum of delays as bifurcation parameter and discussing the related characteristic equations. It is found that the dynamic behaviors of the system depend on the critical value of bifurcation. In addition, the conditions that ensure the stability of the system and the criteria of Hopf bifurcation are given. Finally, the correctness of the theoretical analyses is verified by numerical simulation.

References

1.
McCulloch
,
W. S.
, and
Pitts
,
W.
,
1943
, “
A Logical Calculus of the Ideas Immanent in Nervous Activity
,”
Bull. Math. Biophys.
,
5
(
4
), pp.
115
133
.10.1007/BF02478259
2.
Hopfield
,
J. J.
,
1984
, “
Neurons With Graded Response Have Collective Computational Properties Like Those of Two-State Neurons
,”
Proc. Natl. Acad. Sci.
,
81
(
10
), pp.
3088
3092
.10.1073/pnas.81.10.3088
3.
Kulkarni
,
S. R.
, and
Rajendran
,
B.
,
2018
, “
Spiking Neural Networks for Handwritten Digit Recognition-Supervised Learning and Network Optimization
,”
Neural Netw.
,
103
), pp.
118
127
.10.1016/j.neunet.2018.03.019
4.
Montavon
,
G.
,
Orr
,
G. B.
, and
Mller
,
K. R.
,
2012
,
Neural Networks: Tricks of the Trade
,
Springer-Verlag
,
New York
.
5.
Bo
,
L.
,
Maliha
,
E.
, and
Sten
,
N.
,
1999
, “
Patient Positioning Using Artificial Intelligence Neural Networks, Trained Magnetic Field Sensors and Magnetic Implants
,”
Acta Oncol.
,
38
(
8
), pp.
1109
1112
.10.1080/028418699432446
6.
Brauer
,
J.
, and
Friederici
,
A. D.
,
2007
, “
Functional Neural Networks of Semantic and Syntactic Processes in the Developing Brain
,”
J. Cogn. Neurosci.
,
19
(
10
), pp.
1609
1623
.10.1162/jocn.2007.19.10.1609
7.
Lin
,
C. H.
,
2015
, “
Application of V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Laguerre Orthogonal Polynomials Neural Network Control System and Modified Particle Swarm Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p. 051019.10.1115/1.4030061
8.
Zhu
,
W. Q.
, and
Beroza
,
G. C.
,
2018
, “
PhaseNet: A Deep-Neural-Network-Based Seismic Arrival-Time Picking Method
,”
Geophys. J. Int.
,
216
(
1
), pp.
261
273
.10.1093/gji/ggy423
9.
Jabeen
,
D.
,
Iqrar
,
T.
, and
Khan
,
M. F.
,
2018
, “
Multidimensional Signal Processing Using Quaternion Complex Hadamard Transform in Sequency Domain
,”
Electron. Lett.
,
54
(
25
), pp.
1435
1436
.10.1049/el.2018.6548
10.
Jia
,
C.
,
Wang
,
S.
,
Zhang
,
X.
,
Wang
,
S.
,
Liu
,
J.
,
Pu
,
S.
, and
Ma
,
S.
,
2019
, “
Content-Aware Convolutional Neural Network for in-Loop Filtering in High Efficiency Video Coding
,”
IEEE Trans. Image Process.
,
28
(
7
), pp.
3343
3356
.10.1109/TIP.2019.2896489
11.
Singh
,
C. D.
, and
Singh
,
J.
,
2018
, “
Multi-Channel Versus Quaternion Orthogonal Rotation Invariant Moments for Color Image Representation
,”
Digit. Signal Prog.
,
78
, pp.
376
392
.10.1016/j.dsp.2018.04.001
12.
Liu
,
J.
,
Gong
,
M. G.
, and
He
,
H. B.
,
2019
, “
Deep Associative Neural Network for Associative Memory Based on Unsupervised Representation Learning
,”
Neural Netw.
,
113
, pp.
41
53
.10.1016/j.neunet.2019.01.004
13.
Zhang
,
X. H.
, and
Liao
,
L. Y.
,
2017
, “
Compound Synchronization Based on Memristive Cellular Neural Network of Chaos System
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p. 031002.10.1115/1.4034565
14.
Xiao
,
M.
,
Zheng
,
W. X.
,
Jiang
,
G. P.
, and
Cao
,
J. D.
,
2015
, “
Undamped Oscillations Generated by Hopf Bifurcations in Fractional-Order Recurrent Neural Networks With Caputo Derivative
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
26
(
12
), pp.
3201
3214
.10.1109/TNNLS.2015.2425734
15.
Xu
,
W. Y.
,
Cao
,
J. D.
,
Xiao
,
M.
,
Ho
,
D. W.
, and
Wen
,
G. H.
,
2015
, “
A New Framework for Analysis on Stability and Bifurcation in a Class of Neural Networks With Discrete and Distributed Delays
,”
IEEE T. Cybern.
,
45
(
10
), pp.
2224
2236
.10.1109/TCYB.2014.2367591
16.
Huang
,
C.
,
Nie
,
X.
,
Zhao
,
X.
,
Song
,
Q.
,
Tu
,
Z.
,
Xiao
,
M.
, and
Cao
,
J.
,
2019
, “
Novel Bifurcation Results for a Delayed Fractional-Order Quaternion-Valued Neural Network
,”
Neural Netw.
,
117
, pp.
67
93
.10.1016/j.neunet.2019.05.002
17.
Song
,
Z. G.
,
Qian
,
W. G.
,
Zhen
,
B.
, and
Kong
,
X. G.
,
2019
, “
Multiple Bifurcations and Periodic Coexistence in a Delayed Hopfield Two-Neural System With a Monotonic Activation Function
,”
Adv. Differ. Equ.
,
2019
(
1
),
p. 18
.10.1186/s13662-019-2066-8
18.
Wang
,
Z.
,
Li
,
L.
,
Li
,
Y. X.
, and
Cheng
,
Z. S.
,
2018
, “
Stability and Hopf Bifurcation of a Three-Neuron Network With Multiple Discrete and Distributed Delays
,”
Neural Process. Lett.
,
48
(
3
), pp.
1481
1502
.10.1007/s11063-017-9754-8
19.
Mao
,
X. C.
, and
Hu
,
H. Y.
,
2010
, “
Stability and Bifurcation Analysis of a Network of Four Neurons With Time Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041001
.10.1115/1.4000317
20.
Maier
,
B. F.
,
2019
, “
Generalization of the Small-World Effect on a Model Approaching the Erdős–Rényi Random Graph
,”
Sci. Rep.
,
9
(
1
), p. 9.10.1038/s41598-019-45576-3
21.
Si
,
L.
,
Xiao
,
M.
,
Wang
,
Z.
,
Huang
,
C.
,
Cheng
,
Z.
,
Tao
,
B.
, and
Xu
,
F.
,
2019
, “
Dynamic Optimal Control at Hopf Bifurcation of a Newman-Watts Model of Small-World Networks Via a New PD1n Acheme
,”
Phys. A
,
532
,
p. 15
. 10.1016/j.physa.2019.121769
22.
Xu
,
Y. F.
,
Wang
,
Z.
,
Jiang
,
Y.
,
Yang
,
Y. X.
, and
Wang
,
F.
,
2019
, “
Small-World Network Analysis on Fault Propagation Characteristics of Water Networks in Eco-Industrial Parks
,”
Resour. Conserv. Recycl.
,
149
, pp.
343
351
.10.1016/j.resconrec.2019.05.040
23.
Guo
,
D. S.
, and
Zhang
,
Y. N.
,
2014
, “
Neural Dynamics and Newton–Raphson Iteration for Nonlinear Optimization
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p. 021016.10.1115/1.4025748
24.
Huang
,
C. D.
,
Cao
,
J. D.
,
Xiao
,
M.
,
Alsaedi
,
A.
, and
Hayat
,
T.
,
2018
, “
Effects of Time Delays on Stability and Hopf Bifurcation in a Fractional Ring-Structured Network With Arbitrary Neurons
,”
Commun. Nonlinear Sci. Numer. Simul.
,
57
, pp.
1
13
.10.1016/j.cnsns.2017.09.005
25.
Ibrahim
,
M. M.
, and
Jung
,
I. H.
,
2019
, “
Complex Synchronization of a Ring-Structured Network of FitzHugh-Nagumo Neurons With Single-and Dual-State Gap Junctions Under Ionic Gates and External Electrical Disturbance
,”
IEEE Access
,
7
, pp.
57894
57906
.10.1109/ACCESS.2019.2913872
26.
Gu
,
Y. J.
,
Wang
,
H.
, and
Yu
,
Y. G.
,
2019
, “
Synchronization for Incommensurate Riemann–Liouville Fractional-Order Time-Delayed Competitive Neural Networks With Different Time Scales and Known or Unknown Parameters
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
5
), p.
051002
.10.1115/1.4042494
27.
Xue
,
H. B.
,
Zhang
,
J. Y.
,
Wang
,
H.
, and
Jiang
,
B. S.
,
2018
, “
Robust Stability of Switched Interconnected Systems With Time-Varying Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p. 021004.10.1115/1.4038203
28.
Teng
,
X. H.
, and
Wang
,
Z. H.
,
2018
, “
Stability Switches of a Class of Fractional-Delay Systems With Delay-Dependent Coefficients
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
11
), p.
111005
.10.1115/1.4041083
29.
Sadath
,
A.
, and
Vyasarayani
,
C.
,
2015
, “
Galerkin Approximations for Stability of Delay Differential Equations With Distributed Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p. 061024.10.1115/1.4030153
30.
Hassouneh
,
M. A.
,
Nguyen
,
V.
,
Balachandran
,
B.
, and
Abed
,
E. H.
,
2013
, “
Stability Analysis and Control of Supercavitating Vehicles With Advection Delay
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p. 021003.10.1115/1.4006835
31.
Shi, S., Xiao, M., Rong, L. N., Zheng, W. X., Tao, B. B., Cheng, Z. S., and Xu, F. Y., 2019, “Stability and Bifurcation Control of a Neuron System Under a Novel Fractional-Order PD Controller,”
Sci. China-Tech. Sci.
, 62(12), pp.
2120
2129
.10.1007/s11431-018-9496-x
32.
Li
,
L.
,
Wang
,
Z.
,
Li
,
Y. X.
,
Shen
,
H.
, and
Lu
,
J. W.
,
2018
, “
Hopf Bifurcation Analysis of a Complex-Valued Neural Network Model With Discrete and Distributed Delays
,”
Appl. Math. Comput.
,
330
, pp.
152
169
.https://doi.org/10.1016/j.amc.2018.02.029
33.
Huang
,
C. D.
, and
Cao
,
J. D.
,
2018
, “
Impact of Leakage Delay on Bifurcation in High-Order Fractional BAM Neural Networks
,”
Neural Netw.
,
98
, pp.
223
235
.10.1016/j.neunet.2017.11.020
34.
Li
,
Z. H.
,
Huang
,
C. D.
, and
Zhang
,
Y.
,
2019
, “
Comparative Analysis on Bifurcation of Four-Neuron Fractional Ring Networks Without or With Leakage Delays
,”
Adv. Differ. Equ.
,
2019
(
1
), pp.
1
22
.10.1186/s13662-019-2114-4
35.
Wang
,
T. S.
,
Cheng
,
Z. S.
,
Bu
,
R.
, and
Ma
,
R. S.
,
2019
, “
Stability and Hopf Bifurcation Analysis of a Simplified Six-Neuron Tridiagonal Two-Layer Neural Network Model With Delays
,”
Neurocomputing
,
332
, pp.
203
214
.10.1016/j.neucom.2018.12.005
36.
Zhang
,
Y.
, and
Wang
,
F.
,
2019
, “
Adaptive Neural Control of Non-Strict Feedback System With Actuator Failures and Time-Varying Delays
,”
Appl. Math. Comput.
,
362
,
p. 12
.10.1016/j.amc.2019.06.026
37.
Hu
,
X. H.
,
Xia
,
J. W.
,
Wei
,
Y. L.
,
Meng
,
B.
, and
Shen
,
H.
,
2019
, “
Passivity-Based State Synchronization for Semi-Markov Jump Coupled Chaotic Neural Networks With Randomly Occurring Time Delays
,”
Appl. Math. Comput.
,
361
, pp.
32
41
.10.1016/j.amc.2019.05.016
38.
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1992
, “
Cyclic Motions Near A Hopf Bifurcation of A Four-Dimensional System
,”
Nonlinear Dyn.
,
3
(
1
), pp.
19
39
.10.1007/BF00045469
39.
Xiao
,
M.
,
Zheng
,
W. X.
, and
Cao
,
J. D.
,
2013
, “
Frequency Domain Approach to Computational Analysis of Bifurcation and Periodic Solution in a Two-Neuron Network Model With Distributed Delays and Self-Feedbacks
,”
Neurocomputing
,
99
, pp.
206
213
.10.1016/j.neucom.2012.03.020
40.
Xiao
,
M.
,
Zheng
,
W. X.
, and
Cao
,
J. D.
,
2012
, “
Hopf Bifurcation of an (n+1) -Neuron Bidirectional Associative Memory Neural Network Model With Delays
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
24
(
1
), pp.
118
132
.10.1109/TNNLS.2012.2224123
41.
Xiao
,
M.
,
Zheng
,
W. X.
, and
Cao
,
J. D.
,
2013
, “
Bifurcation and Control in a Neural Network With Small and Large Delays
,”
Neural Netw.
,
44
, pp.
132
142
.10.1016/j.neunet.2013.03.016
42.
Avitable
,
D.
, and
Wedgwood
,
K. C.
,
2017
, “
Macroscopic Coherent Structures in a Stochastic Neural Network: From Interface Dynamics to Coarse-Grained Bifurcation Analysis
,”
J. Math. Biol.
,
75
(
4
), pp.
885
928
.10.1007/s00285-016-1070-9
43.
Javidmanesh
,
E.
,
2017
, “
Global Stability and Bifurcation in Delayed Bidirectional Associative Memory Neural Networks With an Arbitrary Number of Neurons
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
8
), p.
081018
.10.1115/1.4036229
44.
Pratap
,
A.
,
Raja
,
R.
,
Cao
,
J.
,
Lim
,
C.
, and
Bagdasar
,
O.
,
2019
, “
Stability and Pinning Synchronization Analysis of Fractional Order Delayed Cohen–Grossberg Neural Networks With Discontinuous Activations
,”
Appl. Math. Comput.
,
359
, pp.
241
260
.10.1016/j.amc.2019.04.062
45.
Ge
,
J. H.
, and
Xu
,
J.
,
2012
, “
Weak Resonant Double Hopf Bifurcations in an Inertial Four-Neuron Model With Time Delay
,”
Int. J. Neural Syst.
,
22
(
01
), pp.
63
75
.10.1142/S0129065712002980
46.
Yao
,
Y.
,
Xiao
,
M.
,
Cao
,
J. D.
,
Huang
,
C. D.
, and
Song
,
Q. K.
,
2019
, “
Stability Switches and Hopf Bifurcation of a Neuron System With Both Leakage and Distributed Delays
,”
Neural Process. Lett.
,
50
(
1
), pp.
341
355
.10.1007/s11063-018-9916-3
47.
Stamova
,
I. M.
, and
Simeonov
,
S.
,
2018
, “
Delayed Reaction–Diffusion Cellular Neural Networks of Fractional Order: Mittag–Leffler Stability and Synchronization
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
1
), p.
011015
.10.1115/1.4038290
48.
Cai
,
T.
,
Zhang
,
H.
, and
Yang
,
F.
,
2013
, “
Simplified Frequency Method for Stability and Bifurcation of Delayed Neural Networks in Ring Structure
,”
Neurocomputing
,
121
, pp.
416
422
.10.1016/j.neucom.2013.05.022
49.
Ge
,
J. H.
, and
Xu
,
J.
,
2018
, “
Stability and Hopf Bifurcation on Four-Neuron Neural Networks With Inertia and Multiple Delays
,”
Neurocomputing
,
287
, pp.
34
44
.10.1016/j.neucom.2018.01.081
50.
Zhou
,
W. G.
,
Huang
,
C. D.
,
Xiao
,
M.
, and
Cao
,
J. D.
,
2019
, “
Hybrid Tactics for Bifurcation Control in a Fractional-Order Delayed Predator–Prey Model
,”
Phys. A Stat. Mech.
,
515
, pp.
183
191
.10.1016/j.physa.2018.09.185
51.
Cheng
,
Z. S.
,
Xie
,
K. H.
,
Wang
,
T. S.
, and
Cao
,
J. D.
,
2018
, “
Stability and Hopf Bifurcation of Three-Triangle Neural Networks With Delays
,”
Neurocomputing
,
322
, pp.
206
215
.10.1016/j.neucom.2018.09.063
You do not currently have access to this content.