Abstract

Since the thermal load would adversely introduce degradation to the normal operation of spacecraft, resulting in unpredictable thermal-dynamic behavior, thermomechanical coupling problems are important and have been investigated extensively. Based on the absolute nodal coordinate formulation (ANCF), a thermal integrated ANCF thin plate element based on the unified description is constructed, which could depict the displacement and the temperature field integratedly. By means of the proposed element, the heat transfer and continuum mechanics are integrated in the unified finite element method (FEM) mesh of revolving paraboloid antenna. Additionally, the ANCF reference node is introduced for describing the rigid central hub where the antenna is mounted on to make the rigid-flexible-thermal coupled response being captured in a unified analysis procedure. The solar radiation input and the surface emitting radiation are included in the heat transfer equations. Furthermore, the influence of the rigid body motion and the deformation on the radiant absorption are also considered with the self-shadowing. The established rigid-flexible-thermal coupled simulation is performed on a modified generalized-α integrator which solves the set of multidisciplinary governing equations synchronously. For revealing the nonlinear behavior of the rigid-flexible-thermal coupled system, the observed thermally induced vibration and perturbation on the pointing accuracy of the spacecraft are given in the results, and the feasibility of the presented method is proved.

References

1.
Modi
,
V. J.
,
1974
, “
Attitude Dynamics of Satellites With Flexible Appendages—A Brief Review
,”
J. Spacecr. Rockets
,
11
(
11
), pp.
743
751
.10.2514/3.62172
2.
Malla
,
R. B.
,
Nash
,
W. A.
, and
Lardner
,
T. J.
,
1988
, “
Thermal Effects on Very Large Space Structures
,”
J. Aerosp. Eng.
,
1
(
3
), pp.
171
188
.10.1061/(ASCE)0893-1321(1988)1:3(171)
3.
Thornton
,
E. A.
, and
Paul
,
D. B.
,
1985
, “
Thermal-Structural Analysis of Large Space structures—An Assessment of Recent Advances
,”
J. Spacecr. Rockets
,
22
(
4
), pp.
385
393
.10.2514/3.25761
4.
Frisch
,
H. P.
,
1970
, “
Thermally Induced Vibrations of Long Thin-Walled Cylinders of Open Section
,”
J. Spacecr. Rockets
,
7
(
8
), pp.
897
905
.10.2514/3.30068
5.
 
Thornton
,
E. A.
,
1996
, “
Thermal Structures for Aerospace Applications
,”
AIAA Education Series,
AIAA, Reston, VA.10.2514/4.862540
6.
Thornton
,
E. A.
, and
Foster
,
R. S.
,
1992
, “
Dynamic Response of Rapidly Heated Space Structure
,”
Computational Nonlinear Mechanics in Aerospace Engineering, Progress in Astronautics and Aeronautics
, Vol.
146
,
S. N.
Atluri
, ed.,
AIAA
,
Washington, DC
, pp.
451
477
.
7.
Foster
,
C. L.
,
Tinker
,
M. L.
,
Nurre
,
G. S.
, and
Till
,
W. A.
,
1995
, “
Solar-Array-Induced Disturbance of the Hubble Space Telescope Pointing System
,”
J. Spacecr. Rockets
,
32
(
4
), pp.
634
644
.10.2514/3.26664
8.
Johnston
,
J. D.
, and
Thornton
,
E. A.
,
1999
, “
Thermal Snap of Satellite Solar Panels
,”
Proceedings of the Flight Mechanics Symposium
, NASA Goddard Space Flight Center, Greenbelt, MD, May 18–20, Paper No. NASA CP 209235.
9.
Zimbelman
,
D. F.
,
1990
, “
Thermal Shock and Its Effect on Spacecraft Attitude Control
,” Ph.D. thesis,
Dept. of Aerospace Engineering Sciences, Univ. of Colorado
, Boulder, CO.
10.
Zimbelman
,
D. F.
,
Dennehy
,
C. J.
,
Welch
,
R. V.
, and
Born
,
G. H.
,
1991
, “
A Technique for Optimal Temperature Estimation for Modeling Sunrise/Sunset Thermal Snap Disturbance
,”
J. Spacecr. Rockets
,
28
(
4
), pp.
448
456
.10.2514/3.26265
11.
Xie
,
Y. C.
,
Huang
,
H.
,
Hu
,
Y.
, and
Zhang
,
G. Q.
,
2016
, “
Applications of Advanced Control Methods in Spacecrafts: Progress, Challenges, and Future Prospects
,”
Front. Inf. Technol. Electron. Eng.
,
17
(
9
), pp.
841
861
.10.1631/FITEE.1601063
12.
Miao
,
Y.
,
Hwang
,
I.
,
Liu
,
M.
, and
Wang
,
F.
,
2019
, “
Adaptive Fast Nonsingular Terminal Sliding Mode Control for Attitude Tracking of Flexible Spacecraft With Rotating Appendage
,”
Aerosp. Sci. Technol.
,
93
, p.
105312
.10.1016/j.ast.2019.105312
13.
Wang
,
F.
,
Wang
,
C.
,
Chen
,
X. Q.
,
Yue
,
C. F.
,
Xie
,
Y. F.
, and
Chai
,
L. P.
,
2019
, “
High-Precision Control Method for the Satellite With Large Rotating Components
,”
Aerosp. Sci. Technol.
,
92
, pp.
91
98
.10.1016/j.ast.2019.05.036
14.
Wu
,
F.
,
Cao
,
X. B.
,
Butcher
,
E. A.
, and
Wang
,
F.
,
2019
, “
Dynamics and Control of Spacecraft With a Large Misaligned Rotational Component
,”
Aerosp. Sci. Technol.
,
87
, pp.
207
217
.10.1016/j.ast.2019.02.029
15.
Graham
,
J. D.
,
1970
, “
Solar Induced Bending Vibrations of a Flexible Member
,”
AIAA J.
,
8
(
11
), pp.
2031
2036
.10.2514/3.6042
16.
Kraus
,
H.
,
1966
, “
Thermally Induced Vibrations of Thin Non-Shallow Spherical Shells
,”
AIAA J.
,
4
(
3
), pp.
500
505
.10.2514/3.3464
17.
Schmidt
,
C. M.
, and
Hanawalt
,
A. J.
,
1957
, “
Skin Temperature of a Satellite
,”
Jet Propul.
,
27
(
10
), pp.
1079
1083
.10.2514/8.12460
18.
Li
,
H.
,
Zhang
,
T.
,
Li
,
Z.
,
Wen
,
B.
, and
Guan
,
Z.
,
2019
, “
Modeling of the Nonlinear Dynamic Degradation Characteristics of Fiber-Reinforced Composite Thin Plates in Thermal Environment
,”
Nonlinear Dyn.
,
98
(
1
), pp.
819
839
.10.1007/s11071-019-05232-x
19.
Tsuchiya
,
K.
,
1975
, “
Thermally Induced Nutational Body Motion of a Spinning Spacecraft With Flexible Appendages
,”
AIAA J.
,
13
(
4
), pp.
448
453
.10.2514/3.49728
20.
Woodard
,
S. E.
,
Lay
,
R. R.
,
Jarnot
,
R. F.
, and
Gell
,
D. A.
,
1997
, “
Experimental Investigation of Spacecraft in-Flight Disturbances and Dynamic Response
,”
J. Spacecr. Rockets
,
34
(
2
), pp.
199
204
.10.2514/2.3210
21.
Wasfy
,
T. M.
, and
Noor
,
A. K.
,
2000
, “
Multibody Dynamic Simulation of the Next Generation Space Telescope Using Finite Elements and Fuzzy Sets
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
5–7
), pp.
803
824
.10.1016/S0045-7825(99)00445-4
22.
 
Wright
,
R. L.
,
1981
, “
The Microwave Radiometer Spacecraft: A Design Study
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA-RP-1079.
23.
 
Donohue
,
J. H.
, and
Frisch
,
H.
,
1969
, “
Thermoelastic Instability of Open-Section Booms
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA TN D-5310.
24.
 
Frisch
,
H.
,
1970
, “
Coupled Thermally-Induced Transverse Plus Torsional Vibrations of a Thin-Walled Cylinder of Open Section
,” National Aeronautics and Space Administration, Washington, DC, Report No. NASA TR R-333.
25.
Boley
,
B. A.
,
1956
, “
Thermally Induced Vibrations of Beams
,”
J. Aeronaut. Sci.
,
23
(
2
), pp.
179
181
. 10.2514/8.3527
26.
Boley
,
B. A.
, and
Barber
,
A. D.
,
1957
, “
Dynamic Response of Beams and Plates to Rapid Heating
,” ASME
J. Appl. Mech.
,
24
(
5
), pp.
413
416
.
27.
Boley
,
B. A.
, and
Weiner
,
J. H.
,
2012
,
Theory of Thermal Stresses
,
Courier Corporation
, North Chelmsford, MA.
28.
Seibert
,
A. G.
, and
Rice
,
J. S.
,
1973
, “
Coupled Thermally Induced Vibrations of Beams
,”
AIAA J.
,
11
(
7
), pp.
1033
1035
.10.2514/3.6866
29.
Manolis
,
G. D.
, and
Beskos
,
D. E.
,
1980
, “
Thermally Induced Vibrations of Beam Structures
,”
Comput. Methods Appl. Mech. Eng.
,
21
(
3
), pp.
337
355
.10.1016/0045-7825(80)90101-2
30.
Lee
,
U.
,
1990
, “
Dynamic Continuum Modeling of Beamlike Space Structures Using Finite-Element Matrices
,”
AIAA J.
,
28
(
4
), pp.
725
731
.10.2514/3.10452
31.
Namburu
,
R. R.
, and
Tamma
,
K. K.
,
1991
, “
Thermally-Induced Structural Dynamic Response of Flexural Configurations Influenced by Linear/Non-Linear Thermal Effects
,”
AIAA
Paper No. 91-1175-CP.10.2514/6.1991-1175
32.
Chen
,
X. Q.
,
Mohan
,
R. V.
, and
Tamma
,
K. K.
,
1994
, “
Instantaneous Response of Elastic Thin-Walled Structures to Rapid Heating
,”
Int. J. Numer. Methods Eng.
,
37
(
14
), pp.
2389
2408
.10.1002/nme.1620371404
33.
Thornton
,
E. A.
, and
Kim
,
Y. A.
,
1993
, “
Thermally Induced Bending Vibrations of a Flexible Rolled-Up Solar Array
,”
J. Spacecr. Rockets
,
30
(
4
), pp.
438
448
.10.2514/3.25550
34.
Krishna
,
R.
, and
Bainum
,
P. M.
,
1984
, “
Effect of Solar Radiation Disturbance on a Flexible Beam in Orbit
,”
AIAA J.
,
22
(
5
), pp.
677
682
.10.2514/3.8654
35.
Frisch
,
H. P.
,
1980
, “
Thermally Induced Response of Flexible Structures: A Method for Analysis
,”
J. Guid. Control
,
3
(
1
), pp.
92
94
.10.2514/3.55953
36.
Tamma
,
K.
,
Spyrakos
,
C.
, and
Lambi
,
M. A.
,
1987
, “
Thermal/Structural Dynamic Analysis Via a Transform-Method-Based Finite-Element Approach
,”
J. Spacecr. Rockets
,
24
(
3
), pp.
219
226
.10.2514/3.25902
37.
Biswas
,
P.
,
1978
, “
Thermally-Induced Vibrations of a Triangular Slab Resting on Elastic Foundation
,”
J. Sound Vib.
,
59
(
2
), pp.
304
306
.10.1016/0022-460X(78)90510-2
38.
Tauchert
,
T. R.
,
1989
, “
Thermal Shock of Orthotropic Rectangular Plates
,”
J. Therm. Stresses
,
12
(
2
), pp.
241
258
.10.1080/01495738908961964
39.
Chang
,
J. S.
,
Wang
,
J. H.
, and
Tsai
,
T. Z.
,
1992
, “
Thermally Induced Vibration of Thin Laminated Plates by Finite Element Method
,”
Comput. Struct.
,
42
(
1
), pp.
117
128
.10.1016/0045-7949(92)90541-7
40.
Tran
,
T. Q. N.
,
Lee
,
H. P.
, and
Lim
,
S. P.
,
2007
, “
Structural Intensity Analysis of Thin Laminated Composite Plates Subjected to Thermally Induced Vibration
,”
Compos. Struct.
,
78
(
1
), pp.
70
83
.10.1016/j.compstruct.2005.08.019
41.
Gupta
,
A. K.
, and
Singhal
,
P.
,
2010
, “
Effect of Non-Homogeneity on Thermally Induced Vibration of Orthotropic Visco-Elastic Rectangular Plate of Linearly Varying Thickness
,”
Appl. Math.
,
01
(
04
), pp.
326
333
.10.4236/am.2010.14043
42.
Brischetto
,
S.
,
2009
, “
Effect of the Through-the Thickness Temperature Distribution on the Response of Layered and Composite Shells
,”
Int. J. Appl. Mech.
,
01
(
04
), pp.
581
605
.10.1142/S1758825109000393
43.
Lal
,
A.
, and
Singh
,
B. N.
,
2010
, “
Effect of Uncertain System Properties on Thermo-Elastic Stability of Laminated Plates Under Nonuniform Temperature Distribution
,”
Int. J. Appl. Mech.
,
02
(
02
), pp.
399
420
.10.1142/S175882511000055X
44.
Xue
,
M. D.
, and
Ding
,
Y.
,
2004
, “
Two Kinds of Tube Elements for Transient Thermal–Structural Analysis of Large Space Structures
,”
Int. J. Numer. Methods Eng.
,
59
(
10
), pp.
1335
1353
.10.1002/nme.918
45.
Li
,
T. J.
, and
Wang
,
Y.
,
2009
, “
Deployment Dynamic Analysis of Deployable Antennas Considering Thermal Effect
,”
Aerosp. Sci. Technol.
,
13
(
4–5
), pp.
210
215
.10.1016/j.ast.2009.04.005
46.
Xu
,
Y.
, and
Guan
,
F. L.
,
2013
, “
Structure–Electronic Synthesis Design of Deployable Truss Antenna
,”
Aerosp. Sci. Technol.
,
26
(
1
), pp.
259
267
.10.1016/j.ast.2012.05.004
47.
Han
,
B.
,
Xu
,
Y. D.
,
Yao
,
J. T.
,
Zheng
,
D.
,
Li
,
Y. J.
, and
Zhao
,
Y. S.
,
2019
, “
Design and Analysis of a Scissors Double-Ring Truss Deployable Mechanism for Space Antennas
,”
Aerosp. Sci. Technol.
,
93
, p.
105357
.10.1016/j.ast.2019.105357
48.
Du
,
X. L.
,
Du
,
J. L.
,
Bao
,
H.
, and
Sun
,
G. H.
,
2018
, “
Deployment Analysis of Deployable Antennas Considering Cable Net and Truss Flexibility
,”
Aerosp. Sci. Technol.
,
82
, pp.
557
565
.10.1016/j.ast.2018.09.038
49.
Zhao
,
Q. Q.
,
Guo
,
J. K.
,
Hong
,
J.
, and
Liu
,
Z. G.
,
2019
, “
Analysis of Angular Errors of the Planar Multi-Closed-Loop Deployable Mechanism With Link Deviations and Revolute Joint Clearances
,”
Aerosp. Sci. Technol.
,
87
, pp.
25
36
.10.1016/j.ast.2019.02.013
50.
Nie
,
R.
,
He
,
B. Y.
,
Hodges
,
D. H.
, and
Ma
,
X. F.
,
2019
, “
Integrated Form Finding Method for Mesh Reflector Antennas Considering the Flexible Truss and Hinges
,”
Aerosp. Sci. Technol.
,
84
, pp.
926
937
.10.1016/j.ast.2018.11.034
51.
Wu
,
J.
,
Zhao
,
Z. H.
, and
Ren
,
G. X.
,
2012
, “
Dynamic Analysis of Space Structure Deployment With Transient Thermal Load
,”
Adv. Mater. Res.
,
479
, pp.
803
807
.10.4028/www.scientific.net/AMR.479-481.803
52.
Pan
,
K. Q.
, and
Liu
,
J. Y.
,
2010
, “
Dynamic Investigation on Composite Flexible Multi-Body System Considering Thermal Effect
,”
J. Shanghai Jiaotong Univ. (Sci.)
,
15
(
4
), pp.
414
422
.10.1007/s12204-010-1026-y
53.
Lu
,
G. Y.
,
Zhou
,
J. Y.
,
Cai
,
G. P.
,
Fang
,
G. Q.
,
Lv
,
L. L.
, and
Peng
,
F. J.
,
2019
, “
Studies of Thermal Deformation and Shape Control of a Space Planar Phased Array Antenna
,”
Aerosp. Sci. Technol.
,
93
, p.
105311
.10.1016/j.ast.2019.105311
54.
Zhang
,
W.
,
Wu
,
R. Q.
, and
Behdinan
,
K.
,
2019
, “
Nonlinear Dynamic Analysis Near Resonance of a Beam-Ring Structure for Modeling Circular Truss Antenna Under Time-Dependent Thermal Excitation
,”
Aerosp. Sci. Technol.
,
86
, pp.
296
311
.10.1016/j.ast.2019.01.018
55.
Ko
,
K. E.
, and
Kim
,
J. H.
,
2003
, “
Thermally Induced Vibrations of Spinning Thin-Walled Composite Beam
,”
AIAA J.
,
41
(
2
), pp.
296
303
.10.2514/2.1943
56.
Johnston
,
J. D.
, and
Thornton
,
E. A.
,
2000
, “
Thermally Induced Dynamics of Satellite Solar Panels
,”
J. Spacecr. Rockets
,
37
(
5
), pp.
604
613
.10.2514/2.3633
57.
Johnston
,
J. D.
, and
Thornton
,
E. A.
,
1998
, “
Thermally Induced Attitude Dynamics of a Spacecraft With a Flexible Appendage
,”
J. Guid. Control Dyn.
,
21
(
4
), pp.
581
587
.10.2514/2.4297
58.
Liu
,
J. Y.
, and
Lu
,
H.
,
2007
, “
Thermal Effect on the Deformation of a Flexible Beam With Large Kinematical Driven Overall Motions
,”
Eur. J. Mech.-A/Solids
,
26
(
1
), pp.
137
151
.10.1016/j.euromechsol.2006.04.001
59.
Liu
,
J. Y.
,
Lu
,
H.
,
2007
, “
Nonlinear Formulation for Flexible Multibody System Applied With Thermal Load
,”
ASME
Paper No. DETC2007-35917.10.1115/DETC2007-35917
60.
Fan
,
W.
, and
Liu
,
J. Y.
,
2013
, “
Geometric Nonlinear Formulation for Thermal-Rigid-Flexible Coupling System
,”
Acta Mech. Sin.
,
29
(
5
), pp.
728
737
.10.1007/s10409-013-0071-9
61.
Liu
,
J. Y.
, and
Pan
,
K. Q.
,
2016
, “
Rigid-Flexible-Thermal Coupling Dynamic Formulation for Satellite and Plate Multibody System
,”
Aerosp. Sci. Technol.
,
52
, pp.
102
114
.10.1016/j.ast.2016.02.025
62.
Liu
,
J. Y.
, and
Lu
,
H.
,
2007
, “
Rigid-Flexible Coupling Dynamics of Three-Dimensional Hub-Beams System
,”
Multibody Syst. Dyn.
,
18
(
4
), pp.
487
510
.10.1007/s11044-007-9072-4
63.
Guo
,
W.
,
Li
,
Y.
,
Li
,
Y. Z.
,
Tian
,
S.
, and
Wang
,
S.
,
2016
, “
Thermal–Structural Analysis of Large Deployable Space Antenna Under Extreme Heat Loads
,”
J. Therm. Stresses
,
39
(
8
), pp.
887
905
.10.1080/01495739.2016.1189776
64.
Zhang
,
L. H.
, and
Chen
,
Y. G.
,
1999
, “
The on-Orbit Thermal-Structural Analysis of the Spacecraft Component Using MSC/NASTRAN
,”
MSC Aerospace Users' Conference Proceedings
, Long Beach, CA, June 7–10, pp.
1
8
. https://pdfs.semanticscholar.org/93d7/a0f4b46129496cf34a3aee3df4825408eb38.pdf
65.
 
Li
,
W.
,
Xiang
,
Z. H.
, and
Xue
,
M. D.
,
2006
, “
Coupled Thermal-Dynamic Stability Analysis of Large Scale Space Structures by FEM
,” Computational Methods in Engineering and Science, Springer, Berlin.
66.
Li
,
W.
,
Xiang
,
Z. H.
,
Chen
,
L. J.
, and
Xue
,
M. D.
,
2007
, “
Thermal Flutter Analysis of Large-Scale Space Structures Based on Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
69
(
5
), pp.
887
907
.10.1002/nme.1793
67.
You
,
B. D.
,
Zhang
,
H. B.
,
Wang
,
P. X.
, and
Zhang
,
J.
,
2015
, “
Satellite Antenna Dynamics and Control With Thermal Effect
,”
Aircr. Eng. Aerosp. Technol.
,
87
(
3
), pp.
274
283
.10.1108/AEAT-05-2013-0093
68.
Azadi
,
M.
,
Eghtesad
,
M.
,
Fazelzadeh
,
S. A.
, and
Azadi
,
E.
,
2015
, “
Dynamics and Control of a Smart Flexible Satellite Moving in an Orbit
,”
Multibody Syst. Dyn.
,
35
(
1
), pp.
1
23
.10.1007/s11044-014-9447-2
69.
Liu
,
L.
,
Cao
,
D. Q.
,
Huang
,
H.
,
Shao
,
C. H.
, and
Xu
,
Y. Q.
,
2017
, “
Thermal-Structural Analysis for an Attitude Maneuvering Flexible Spacecraft Under Solar Radiation
,”
Int. J. Mech. Sci.
,
126
, pp.
161
170
.10.1016/j.ijmecsci.2017.03.028
70.
Liu
,
L.
,
Wang
,
X. D.
,
Sun
,
S. P.
,
Cao
,
D. Q.
, and
Liu
,
X. Y.
,
2019
, “
Dynamic Characteristics of Flexible Spacecraft With Double Solar Panels Subjected to Solar Radiation
,”
Int. J. Mech. Sci.
,
151
, pp.
22
32
.10.1016/j.ijmecsci.2018.10.067
71.
Liu
,
L.
,
Sun
,
S. P.
,
Cao
,
D. Q.
, and
Liu
,
X. Y.
,
2019
, “
Thermal-Structural Analysis for Flexible Spacecraft With Single or Double Solar Panels: A Comparison Study
,”
Acta Astronaut.
,
154
, pp.
33
43
.10.1016/j.actaastro.2018.10.024
72.
Li
,
Y. Y.
,
Wang
,
C.
, and
Huang
,
W. H.
,
2019
, “
Rigid-Flexible-Thermal Analysis of Planar Composite Solar Array With Clearance Joint Considering Torsional Spring, Latch Mechanism and Attitude Controller
,”
Nonlinear Dyn.
,
96
(
3
), pp.
2031
2053
.10.1007/s11071-019-04903-z
73.
Orden
,
J. C. G.
, and
Romero
,
I.
,
2012
, “
Energy-Entropy-Momentum Integration of Discrete Thermo-Visco-Elastic Dynamics
,”
Eur. J. Mech.-A/Solids
,
32
, pp.
76
87
.10.1016/j.euromechsol.2011.09.007
74.
Duan
,
J.
,
Xiang
,
Z. H.
, and
Xue
,
M. D.
,
2008
, “
Thermal–Dynamic Coupling Analysis of Large Space Structures Considering Geometric Nonlinearity
,”
Int. J. Struct. Stab. Dyn.
,
08
(
04
), pp.
569
596
.10.1142/S0219455408002806
75.
Modi
,
V. J.
,
Suleman
,
A.
,
Ng
,
A. C.
, and
Morita
,
Y.
,
1991
, “
An Approach to Dynamics and Control of Orbiting Flexible Structures
,”
Int. J. Numer. Methods Eng.
,
32
(
8
), pp.
1727
1748
.10.1002/nme.1620320813
76.
 
Shabana
,
A. A.
,
1996
, “
An Absolute Nodal Coordinates Formulation for the Large Rotation and Deformation Analysis of Flexible Bodies
,” University of Illinois at Chicago, Chicago, IL, Report. No. MBS96-1-UIC.
77.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
,
Cambridge University Press
,
London
, UK.
78.
Sereshk
,
M. V.
, and
Salimi
,
M.
,
2011
, “
Comparison of Finite Element Method Based on Nodal Displacement and Absolute Nodal Coordinate Formulation (ANCF) in Thin Shell Analysis
,”
Int. J. Numer. Methods Biomed. Eng.
,
27
(
8
), pp.
1185
1198
.10.1002/cnm.1348
79.
 
Schwab
,
A. L.
,
Gerstmayr
,
J.
, and
Meijaard
,
J. P.
,
2007
, “
Comparison of Three-Dimensional Flexible Thin Plate Elements for Multibody Dynamic Analysis: Finite Element Formulation and Absolute Nodal Coordinate Formulation
,”
ASME
Paper No. DETC2007-34754. 10.1115/DETC2007-34754
80.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multi-Body Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031016
.10.1115/1.4023487
81.
Liu
,
J.
,
Hong
,
J.
, and
Cui
,
L.
,
2007
, “
An Exact Nonlinear Hybrid-Coordinate Formulation for Flexible Multibody System
,”
Acta Mech. Sin.
,
23
(
6
), pp.
699
706
.10.1007/s10409-007-0118-x
82.
Shen
,
Z. X.
,
Tian
,
Q.
,
Liu
,
X. N.
, and
Hu
,
G. K.
,
2013
, “
Thermally Induced Vibrations of Flexible Beams Using Absolute Nodal Coordinate Formulation
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
386
393
.10.1016/j.ast.2013.04.009
83.
Shen
,
Z. X.
, and
Hu
,
G. K.
,
2013
, “
Thermally Induced Vibrations of Solar Panel and Their Coupling With Satellite
,”
Int. J. Appl. Mech.
,
05
(
03
), p.
1350031
.10.1142/S1758825113500312
84.
Shen
,
Z. X.
, and
Hu
,
G. K.
,
2015
, “
Thermally Induced Dynamics of a Spinning Spacecraft With an Axial Flexible Boom
,”
J. Spacecr. Rockets
,
52
(
5
), pp.
1503
1508
.10.2514/1.A33116
85.
Zhang
,
Y. J.
,
Qin
,
W. N.
, and
Ruan
,
J. J.
,
2015
, “
Variable Mapping Method With Nonmatching Meshes in 3-D Finite-Element Analysis of Coupled Electromagnetic-Structural Fields
,”
IEEE Trans. Plasma Sci.
,
43
(
5
), pp.
1288
1292
.10.1109/TPS.2015.2418051
86.
Tamma
,
K. K.
, and
Namburu
,
R. R.
,
1990
, “
A New Unified Explicit Architecture of Thermal/Structural Dynamic Algorithms: Applications to Coupled Thermoelasticity
,”
Comput. Struct.
,
37
(
4
), pp.
535
545
.10.1016/0045-7949(90)90042-Z
87.
Cui
,
Y. Q.
,
Yu
,
Z. Q.
, and
Lan
,
P.
,
2019
, “
A Novel Method of Thermo-Mechanical Coupled Analysis Based on the Unified Description
,”
Mech. Mach. Theory
,
134
, pp.
376
392
.10.1016/j.mechmachtheory.2019.01.001
88.
Shabana
,
A. A.
,
2015
, “
ANCF Reference Node for Multibody System Analysis
,”
Proc. Inst. Mech. Eng., Part K
,
229
(
1
), pp.
109
112
.10.1177/1464419314546342
89.
Yu
,
Z. Q.
,
Liu
,
Y. G.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2016
, “
Integration of Geometry and Analysis for Vehicle System Applications: Continuum-Based Leaf Spring and Tire Assembly
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031011
.10.1115/1.4031151
90.
Dufva
,
K.
, and
Shabana
,
A. A.
,
2005
, “
Analysis of Thin Plate Structures Using the Absolute Nodal Coordinate Formulation
,”
Proc. Inst. Mech. Eng., Part K
,
219
(
4
), pp.
345
355
.10.1243/146441905X50678
91.
Lan
,
P.
,
Cui
,
Y. Q.
, and
Yu
,
Z. Q.
,
2019
, “
A Novel Absolute Nodal Coordinate Formulation Thin Plate Tire Model With Fractional Derivative Viscosity and Surface Integral-Based Contact Algorithm
,”
Proc. Inst. Mech. Eng., Part K
,
233
(
3
), pp.
583
597
.10.1177/1464419318816527
92.
Nachbagauer
,
K.
,
2014
, “
State of the Art of ANCF Elements Regarding Geometric Description, Interpolation Strategies, Definition of Elastic Forces, Validation and the Locking Phenomenon in Comparison With Proposed Beam Finite Elements
,”
Arch. Comput. Methods Eng.
,
21
(
3
), pp.
293
319
.10.1007/s11831-014-9117-9
93.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V. V.
, and
Mikkola
,
A.
,
2017
, “
Analysis of High-Order Quadrilateral Plate Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Adv. Mech. Eng.
,
9
(
6
), pp.
1
2
.10.1177/1687814017705069
94.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
95.
Ma
,
C.
,
Wang
,
R.
,
Wei
,
C.
, and
Zhao
,
Y.
,
2016
, “
A New Absolute Nodal Coordinate Formulation of Solid Element With Continuity Condition and Viscosity Model
,”
Int. J. Simul.: Syst., Sci. Technol.
,
17
(
21
), pp. 10.
1
–10.
6
.http://ijssst.info/Vol-17/No-21/paper10.pdf
96.
Wang
,
Y.
,
Li
,
F. M.
,
Wang
,
Y. Z.
, and
Jing
,
X. J.
,
2017
, “
Nonlinear Responses and Stability Analysis of Viscoelastic Nanoplate Resting on Elastic Matrix Under 3: 1 Internal Resonances
,”
Int. J. Mech. Sci.
,
128
, pp.
94
104
.10.1016/j.ijmecsci.2017.04.010
97.
 
Hyldahl
,
P.
,
Mikkola
,
A.
, and
Balling
,
O.
,
2014
, “
Studies on the Kinematics of Thin Shell Elements Based on the Absolute Nodal Coordinate Formulation
,”
ASME
Paper No. DETC2014-34635.10.1115/DETC2014-34635
You do not currently have access to this content.