Abstract
A novel time-discontinuous Galerkin (DG) method is introduced for the time integration of the differential-algebraic equations governing the dynamic response of flexible multibody systems. In contrast to traditional Galerkin methods, the rigid-body motion field is interpolated using the dual spherical linear scheme. Furthermore, the jumps inherent to time-DG methods are expressed in terms of a parameterization of the relative motion from one time-step to the next. The proposed scheme is third-order accurate for initial value problems of both rigid and flexible multibody dynamics.
Issue Section:
Research Papers
References
1.
Gear
,
C. W.
, 1971
, Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice Hall
,
Englewood Cliff, NJ
.2.
Hairer
,
E.
, and
Wanner
,
G.
, 1996
, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer
,
Berlin
.3.
Bottasso
,
C. L.
, and
Borri
,
M.
, 1998
, “
Integrating Finite Rotations
,” Comput. Methods Appl. Mech. Eng.
,
164
(3–4
), pp. 307
–331
.10.1016/S0045-7825(98)00031-04.
Wang
,
J.
,
Rodriguez
,
J.
, and
Keribar
,
R.
, 2010
, “
Integration of Flexible Multibody Systems Using Radau IIA Algorithms
,” ASME J. Comput. Nonlinear Dyn.
,
5
(4
), p. 041008
.10.1115/1.40019075.
Géradin
,
M.
, and
Cardona
,
A.
, 2001
, Flexible Multibody System: A Finite Element Approach
,
Wiley
,
New York
.6.
Bauchau
,
O. A.
, 2011
, Flexible Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
.7.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
, 1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,” Earthquake Eng. Struct. Dyn.
,
5
(3
), pp. 283
–292
.10.1002/eqe.42900503068.
Jay
,
L. O.
, and
Negrut
,
D.
, 2007
, “
Extensions of the HHT-α Method to Differential Algebraic Equations in Mechanics
,” Electron. Trans. Numer. Anal.
,
26
(1
), pp. 190
–208
.https://homepages.cae.wisc.edu/~negrut/PDFpapers/HHTDAES.pdf9.
Chung
,
J.
, and
Hulbert
,
G. M.
, 1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,” ASME J. Appl. Mech.
,
60
(2
), pp. 371
–375
.10.1115/1.290080310.
Arnold
,
M.
, and
Brüls
,
O.
, 2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,” Multibody Syst. Dyn.
,
18
(2
), pp. 185
–202
.10.1007/s11044-007-9084-011.
Cardona
,
A.
, and
Géradin
,
M.
, 1989
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,” Comput. Struct.
,
33
(3
), pp. 801
–820
.10.1016/0045-7949(89)90255-112.
Hughes
,
T. R. J.
, and
Hulbert
,
M.
, 1988
, “
Space-Time Finite Element Formulations for Elasto-Dynamics: Formulation and Error Estimates
,” Comput. Methods Appl. Mech. Eng.
,
66
(3
), pp. 339
–363
.10.1016/0045-7825(88)90006-013.
Hulbert
,
G.
, 1992
, “
Time Finite Element Methods for Structural Dynamics
,” Int. J. Numer. Methods Eng.
,
33
(2
), pp. 307
–331
.10.1002/nme.162033020614.
Borri
,
M.
, 1986
, “
Helicopter Rotor Dynamics by Finite Element Time Approximation
,” Comput. Math. Appl.
,
12
(1
), pp. 149
–160
.10.1016/0898-1221(86)90092-115.
Bauchau
,
O. A.
, and
Hong
,
C. H.
, 1988
, “
Nonlinear Response and Stability Analysis of Beams Using Finite Elements in Time
,” AIAA J.
,
26
(9
), pp. 1135
–1142
.10.2514/3.1002116.
Bauchau
,
O. A.
, and
Theron
,
N. J.
, 1996
, “
Energy Decaying Scheme for Non-Linear Beam Models
,” Comput. Methods Appl. Mech. Eng.
,
134
(1–2
), pp. 37
–56
.10.1016/0045-7825(96)01030-417.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
, 2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms—Part I: Formulation
,” Comput. Methods Appl. Mech. Eng.
,
190
(29–30
), pp. 3669
–3699
.10.1016/S0045-7825(00)00286-318.
Bauchau
,
O. A.
, and
Theron
,
N. J.
, 1996
, “
Energy Decaying Schemes for Nonlinear Elastic Multi-Body Systems
,” Comput. Struct.
,
59
(2
), pp. 317
–331
.10.1016/0045-7949(95)00250-219.
Study
,
E.
, 1903
, Geometrie der Dynamen
,
Teubner
, Leipzig, Germany
.20.
Martinez
,
J. M. R.
, and
Duffy
,
J.
, 1993
, “
The Principle of Transference: History, Statement and Proof
,” Mech. Mach. Theory
,
28
(1
), pp. 165
–177
.10.1016/0094-114X(93)90055-Z21.
Han
,
S. L.
, and
Bauchau
,
O. A.
, 2016
, “
Manipulation of Motion Via Dual Entities
,” Nonlinear Dyn.
,
85
(1
), pp. 509
–524
.10.1007/s11071-016-2703-722.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
, 2003
, “
The Vector Parameterization of Motion
,” Nonlinear Dyn.
,
33
(2
), pp. 165
–188
.10.1023/A:102600841406523.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
, 2000
, “
On Representations and Parameterizations of Motion
,” Multibody Syst. Dyn.
,
4
(2/3
), pp. 129
–193
.10.1023/A:100983062659724.
Shoemake
,
K.
, 1985
, “
Animating Rotation With Quaternion Curves
,” SIGGRAPH Comput. Graph.
,
19
(3
), pp. 245
–254
.10.1145/325165.32524225.
Han
,
S. L.
, and
Bauchau
,
O. A.
, 2018
, “
On the Global Interpolation of Motion
,” Comput. Methods Appl. Mech. Eng.
,
337
(10
), pp. 352
–386
.10.1016/j.cma.2018.04.00226.
Borri
,
M.
, and
Bottasso
,
C. L.
, 1994
, “
An Intrinsic Beam Model Based on a Helicoidal Approximation. Part I: Formulation
,” Int. J. Numer. Methods Eng.
,
37
(13
), pp. 2267
–2289
.10.1002/nme.162037130827.
Dimentberg
,
F. M.
, 1968
, “
The Screw Calculus and Its Applications
,” Clearinghouse for Federal and Scientific Technical Information, Springfield, VA
, Report No. AD 680993.28.
Lanczos
,
C.
, 1970
, The Variational Principles of Mechanics
,
Dover Publications
,
New York
.29.
Zhong
,
W. X.
, 2004
, Duality System in Applied Mechanics and Optimal Control
,
Kluwer Academic Publishers
,
Boston, MA
.30.
Borri
,
M.
, and
Bottasso
,
C. L.
, 1993
, “
A General Framework for Interpreting Time Finite Element Formulations
,” Comput. Mech.
,
13
(3
), pp. 133
–142
.10.1007/BF0037013131.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
, 2007
, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index-Three Differential Algebraic Equations
,” SIAM J. Sci. Comput.
,
29
(1
), pp. 397
–414
.10.1137/05063850332.
Bauchau
,
O. A.
,
Epple
,
A.
, and
Bottasso
,
C. L.
, 2009
, “
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
,” ASME J. Comput. Nonlinear Dyn.
,
4
(2
), p. 021007
.10.1115/1.307982633.
Han
,
S. L.
, and
Bauchau
,
O. A.
, 2019
, “
Spectral Formulation for Geometrically Exact Beams: A Motion Interpolation Based Approach
,” AIAA J.
,
57
(10
), pp. 4278
–4290
.10.2514/1.J05748934.
Bauchau
,
O. A.
,
Betsch
,
P.
,
Cardona
,
A.
,
Gerstmayr
,
J.
,
Jonker
,
B.
,
Masarati
,
P.
, and
Sonneville
,
V.
, 2016
, “
Validation of Flexible Multibody Dynamics Beam Formulations Using Benchmark Problems
,” Multibody Syst. Dyn.
,
37
(1
), pp. 29
–48
.10.1007/s11044-016-9514-yCopyright © 2020 by ASME
You do not currently have access to this content.