Abstract

A novel time-discontinuous Galerkin (DG) method is introduced for the time integration of the differential-algebraic equations governing the dynamic response of flexible multibody systems. In contrast to traditional Galerkin methods, the rigid-body motion field is interpolated using the dual spherical linear scheme. Furthermore, the jumps inherent to time-DG methods are expressed in terms of a parameterization of the relative motion from one time-step to the next. The proposed scheme is third-order accurate for initial value problems of both rigid and flexible multibody dynamics.

References

1.
Gear
,
C. W.
,
1971
,
Numerical Initial Value Problems in Ordinary Differential Equations
,
Prentice Hall
,
Englewood Cliff, NJ
.
2.
Hairer
,
E.
, and
Wanner
,
G.
,
1996
,
Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems
,
Springer
,
Berlin
.
3.
Bottasso
,
C. L.
, and
Borri
,
M.
,
1998
, “
Integrating Finite Rotations
,”
Comput. Methods Appl. Mech. Eng.
,
164
(
3–4
), pp.
307
331
.10.1016/S0045-7825(98)00031-0
4.
Wang
,
J.
,
Rodriguez
,
J.
, and
Keribar
,
R.
,
2010
, “
Integration of Flexible Multibody Systems Using Radau IIA Algorithms
,”
ASME J. Comput. Nonlinear Dyn.
,
5
(
4
), p.
041008
.10.1115/1.4001907
5.
Géradin
,
M.
, and
Cardona
,
A.
,
2001
,
Flexible Multibody System: A Finite Element Approach
,
Wiley
,
New York
.
6.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
7.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
8.
Jay
,
L. O.
, and
Negrut
,
D.
,
2007
, “
Extensions of the HHT-α Method to Differential Algebraic Equations in Mechanics
,”
Electron. Trans. Numer. Anal.
,
26
(
1
), pp.
190
208
.https://homepages.cae.wisc.edu/~negrut/PDFpapers/HHTDAES.pdf
9.
Chung
,
J.
, and
Hulbert
,
G. M.
,
1993
, “
A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method
,”
ASME J. Appl. Mech.
,
60
(
2
), pp.
371
375
.10.1115/1.2900803
10.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
11.
Cardona
,
A.
, and
Géradin
,
M.
,
1989
, “
Time Integration of the Equations of Motion in Mechanism Analysis
,”
Comput. Struct.
,
33
(
3
), pp.
801
820
.10.1016/0045-7949(89)90255-1
12.
Hughes
,
T. R. J.
, and
Hulbert
,
M.
,
1988
, “
Space-Time Finite Element Formulations for Elasto-Dynamics: Formulation and Error Estimates
,”
Comput. Methods Appl. Mech. Eng.
,
66
(
3
), pp.
339
363
.10.1016/0045-7825(88)90006-0
13.
Hulbert
,
G.
,
1992
, “
Time Finite Element Methods for Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
33
(
2
), pp.
307
331
.10.1002/nme.1620330206
14.
Borri
,
M.
,
1986
, “
Helicopter Rotor Dynamics by Finite Element Time Approximation
,”
Comput. Math. Appl.
,
12
(
1
), pp.
149
160
.10.1016/0898-1221(86)90092-1
15.
Bauchau
,
O. A.
, and
Hong
,
C. H.
,
1988
, “
Nonlinear Response and Stability Analysis of Beams Using Finite Elements in Time
,”
AIAA J.
,
26
(
9
), pp.
1135
1142
.10.2514/3.10021
16.
Bauchau
,
O. A.
, and
Theron
,
N. J.
,
1996
, “
Energy Decaying Scheme for Non-Linear Beam Models
,”
Comput. Methods Appl. Mech. Eng.
,
134
(
1–2
), pp.
37
56
.10.1016/0045-7825(96)01030-4
17.
Borri
,
M.
,
Bottasso
,
C. L.
, and
Trainelli
,
L.
,
2001
, “
Integration of Elastic Multibody Systems by Invariant Conserving/Dissipating Algorithms—Part I: Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
29–30
), pp.
3669
3699
.10.1016/S0045-7825(00)00286-3
18.
Bauchau
,
O. A.
, and
Theron
,
N. J.
,
1996
, “
Energy Decaying Schemes for Nonlinear Elastic Multi-Body Systems
,”
Comput. Struct.
,
59
(
2
), pp.
317
331
.10.1016/0045-7949(95)00250-2
19.
Study
,
E.
,
1903
,
Geometrie der Dynamen
,
Teubner
,
Leipzig, Germany
.
20.
Martinez
,
J. M. R.
, and
Duffy
,
J.
,
1993
, “
The Principle of Transference: History, Statement and Proof
,”
Mech. Mach. Theory
,
28
(
1
), pp.
165
177
.10.1016/0094-114X(93)90055-Z
21.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2016
, “
Manipulation of Motion Via Dual Entities
,”
Nonlinear Dyn.
,
85
(
1
), pp.
509
524
.10.1007/s11071-016-2703-7
22.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
,
2003
, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
,
33
(
2
), pp.
165
188
.10.1023/A:1026008414065
23.
Borri
,
M.
,
Trainelli
,
L.
, and
Bottasso
,
C. L.
,
2000
, “
On Representations and Parameterizations of Motion
,”
Multibody Syst. Dyn.
,
4
(
2/3
), pp.
129
193
.10.1023/A:1009830626597
24.
Shoemake
,
K.
,
1985
, “
Animating Rotation With Quaternion Curves
,”
SIGGRAPH Comput. Graph.
,
19
(
3
), pp.
245
254
.10.1145/325165.325242
25.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2018
, “
On the Global Interpolation of Motion
,”
Comput. Methods Appl. Mech. Eng.
,
337
(
10
), pp.
352
386
.10.1016/j.cma.2018.04.002
26.
Borri
,
M.
, and
Bottasso
,
C. L.
,
1994
, “
An Intrinsic Beam Model Based on a Helicoidal Approximation. Part I: Formulation
,”
Int. J. Numer. Methods Eng.
,
37
(
13
), pp.
2267
2289
.10.1002/nme.1620371308
27.
Dimentberg
,
F. M.
,
1968
, “
The Screw Calculus and Its Applications
,” Clearinghouse for Federal and Scientific Technical Information,
Springfield, VA
, Report No. AD 680993.
28.
Lanczos
,
C.
,
1970
,
The Variational Principles of Mechanics
,
Dover Publications
,
New York
.
29.
Zhong
,
W. X.
,
2004
,
Duality System in Applied Mechanics and Optimal Control
,
Kluwer Academic Publishers
,
Boston, MA
.
30.
Borri
,
M.
, and
Bottasso
,
C. L.
,
1993
, “
A General Framework for Interpreting Time Finite Element Formulations
,”
Comput. Mech.
,
13
(
3
), pp.
133
142
.10.1007/BF00370131
31.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
,
2007
, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index-Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput.
,
29
(
1
), pp.
397
414
.10.1137/050638503
32.
Bauchau
,
O. A.
,
Epple
,
A.
, and
Bottasso
,
C. L.
,
2009
, “
Scaling of Constraints and Augmented Lagrangian Formulations in Multibody Dynamics Simulations
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
2
), p.
021007
.10.1115/1.3079826
33.
Han
,
S. L.
, and
Bauchau
,
O. A.
,
2019
, “
Spectral Formulation for Geometrically Exact Beams: A Motion Interpolation Based Approach
,”
AIAA J.
,
57
(
10
), pp.
4278
4290
.10.2514/1.J057489
34.
Bauchau
,
O. A.
,
Betsch
,
P.
,
Cardona
,
A.
,
Gerstmayr
,
J.
,
Jonker
,
B.
,
Masarati
,
P.
, and
Sonneville
,
V.
,
2016
, “
Validation of Flexible Multibody Dynamics Beam Formulations Using Benchmark Problems
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
29
48
.10.1007/s11044-016-9514-y
You do not currently have access to this content.