Abstract

Due to their high sensitivity to excitations with low intensity, bistable energy harvesting systems have received significant attention. In practical applications, it is difficult to achieve a bistable energy harvester (BEH) with a perfectly symmetric potential energy function. Moreover, gravity acts to exert a significant influence on the output response of a BEH oscillator when excited at different bias angles. Therefore, the experimental output voltage time-series of an asymmetric potential BEH are examined in this paper. The BEH studied here was composed of a cantilever beam, two piezo-electric layers at the root and two magnets at the end, and was subjected to harmonic excitations at different bias angles. The energy harvesting system exhibited intrawell, periodic, and chaotic snap-through vibrational patterns under different excitation frequencies at different bias angles explored. To better understand the multiple dynamic behaviors of the system corresponding to different power outputs, we identify the output voltage response by the methods of multiscale entropy (MSE) and recurrence plots. Results indicate that periodic and chaotic vibrational patterns can be readily distinguished by the methods employed. Furthermore, it is demonstrated that the bias angle had a significant influence on the output power of the asymmetric potential BEH.

References

1.
Bowen
,
C. R.
,
Kim
,
H. A.
,
Weaver
,
P. M.
, and
Dunn
,
S.
,
2014
, “
Piezoelectric and Ferroelectric Materials and Structures for Energy Harvesting Applications
,”
Energy Environ. Sci.
,
7
(
1
), pp.
25
44
.10.1039/C3EE42454E
2.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.10.1088/0964-1726/22/2/023001
3.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct
,.,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
4.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.10.1177/1045389X12444940
5.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phys. Rev. Lett.
,
102
(
8
), p.
080601
.10.1103/PhysRevLett.102.080601
6.
Erturk
,
A.
,
Hoffmann
,
J.
, and
Inman
,
D. J.
,
2009
, “
A Piezomagnetoelastic Structure for Broadband Vibration Energy Harvesting
,”
Appl. Phys. Lett.
,
94
(
25
), p.
254102
.10.1063/1.3159815
7.
Erturk
,
A.
, and
Inman
,
D. J.
,
2011
, “
Broadband Piezoelectric Power Generation on High-Energy Orbits of the Bistable Duffing Oscillator With Electromechanical Coupling
,”
J. Sound Vib.
,
330
(
10
), pp.
2339
2353
.10.1016/j.jsv.2010.11.018
8.
Ferrari
,
M.
,
Ferrari
,
V.
,
Guizzetti
,
M.
,
Andò
,
B.
,
Baglio
,
S.
, and
Trigona
,
C.
,
2010
, “
Improved Energy Harvesting From Wideband Vibrations by Nonlinear Piezoelectric Converters
,”
Sensor Actuat. A: Phys.
,
162
(
2
), pp.
425
431
.10.1016/j.sna.2010.05.022
9.
Litak
,
G.
,
Friswell
,
M. I.
, and
Adhikari
,
S.
,
2010
, “
Magnetopiezoelastic Energy Harvesting Driven by Random Excitations
,”
Appl. Phys. Lett.
,
96
(
21
), p.
214103
.10.1063/1.3436553
10.
Daqaq
,
M. F.
,
2012
, “
On Intentional Introduction of Stiffness Nonlinearities for Energy Harvesting Under White Gaussian Excitations
,”
Nonlinear Dyn.
,
69
(
3
), pp.
1063
1079
.10.1007/s11071-012-0327-0
11.
Kim
,
P.
,
Son
,
D.
, and
Seok
,
J.
,
2016
, “
Triple-Well Potential With a Uniform Depth: Advantageous Aspects in Designing a Multi-Stable Energy Harvester
,”
Appl. Phys. Lett.
,
108
(
24
), p.
243902
.10.1063/1.4954169
12.
Zhou
,
Z.
,
Qin
,
W.
, and
Zhu
,
P.
,
2016
, “
Improve Efficiency of Harvesting Random Energy by Snap-Through in a Quad-Stable Harvester
,”
Sensor Actuat. A: Phys.
,
243
, pp.
151
158
.10.1016/j.sna.2016.03.024
13.
Wang
,
C.
,
Zhang
,
Q.
, and
Wang
,
W.
,
2017
, “
Wideband Quin-Stable Energy Harvesting Via Combined Nonlinearity
,”
AIP Adv.
,
7
(
4
), p.
045314
.10.1063/1.4982730
14.
Halvorsen
,
E.
,
2013
, “
Fundamental Issues in Nonlinear Wideband-Vibration Energy Harvesting
,”
Phys. Rev. E
,
87
(
4
), p.
042129
.10.1103/PhysRevE.87.042129
15.
He
,
Q. F.
, and
Daqaq
,
M. F.
,
2014
, “
Influence of Potential Function Asymmetries on the Performance of Nonlinear Energy Harvesters Under White Noise
,”
J. Sound Vib.
,
333
(
15
), pp.
3479
3489
.10.1016/j.jsv.2014.03.034
16.
Wang
,
W.
,
Cao
,
J.
,
Bowen
,
C. R.
,
Zhang
,
Y.
, and
Lin
,
J.
,
2018
, “
Nonlinear Dynamics and Performance Enhancement of Asymmetric Potential Bistable Energy Harvesters
,”
Nonlinear Dyn.
,
94
(
2
), pp.
1183
1194
.10.1007/s11071-018-4417-5
17.
Cao
,
J.
,
Syta
,
A.
,
Litak
,
G.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Chen
,
Y.
,
2015
, “
Regular and Chaotic Vibration in a Piezoelectric Energy Harvester With Fractional Damping
,”
Eur. Phys. J. Plus
,
130
(
6
), p.
103
.10.1140/epjp/i2015-15103-8
18.
Harris
,
P.
,
Arafa
,
M.
,
Litak
,
G.
,
Bowen
,
C. R.
, and
Iwaniec
,
J.
,
2017
, “
Output Response Identification in a Multistable System for Piezoelectric Energy Harvesting
,”
Eur. Phys. J. B
,
90
(
1
), p.
20
.10.1140/epjb/e2016-70619-y
19.
Harris
,
P.
,
Bowen
,
C. R.
,
Kim
,
H. A.
, and
Litak
,
G.
,
2016
, “
Dynamics of a Vibrational Energy Harvester With a Bistable Beam: Voltage Response Identification by Multiscale Entropy and ‘0-1’ Test
,”
Eur. Phys. J. Plus
,
131
(
4
), p.
109
.10.1140/epjp/i2016-16109-4
20.
Syta
,
A.
,
Bowen
,
C. R.
,
Kim
,
H. A.
,
Rysak
,
A.
, and
Litak
,
G.
,
2016
, “
Responses of Bistable Piezoelectric-Composite Energy Harvester by Means of Recurrences
,”
Mech. Syst. Signal. Process.
,
76–77
, pp.
823
832
.10.1016/j.ymssp.2016.01.021
21.
Wolszczak
,
P.
,
Łygas
,
K.
, and
Litak
,
G.
,
2018
, “
Dynamics Identification of a Piezoelectric Vibrational Energy Harvester by Image Analysis With a High Speed Camera
,”
Mech. Syst. Signal. Process.
,
107
, pp.
43
52
.10.1016/j.ymssp.2018.01.024
22.
Strogatz
,
S.
,
1994
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
Westview Press
,
Cambridge, MA
.
23.
Kantz
,
H.
, and
Schreiber
,
T.
,
1997
,
Nonlinear Time Series Analysis
,
Cambridge University Press
,
Cambridge, UK
.
24.
Takens
,
F.
,
1981
,
Detecting Strange Attractors in Turbulence
,
Springer
,
Berlin, Heidelberg
.
25.
Litak
,
G.
,
Wiercigroch
,
M.
,
Horton
,
B. W.
, and
Xu
,
X.
,
2010
, “
Transient Chaotic Behaviour Versus Periodic Motion of a Parametric Pendulum by Recurrence Plots
,”
ZAMM
,
90
(
1
), pp.
33
41
.10.1002/zamm.200900290
26.
Wu
,
S.-D.
,
Wu
,
C.-W.
,
Lin
,
S.-G.
,
Wang
,
C.-C.
, and
Lee
,
K.-Y.
,
2013
, “
Time Series Analysis Using Composite Multiscale Entropy
,”
Entropy
,
15
(
3
), pp.
1069
1084
.10.3390/e15031069
27.
Yu
,
J.
,
Cao
,
J.
,
Liao
,
W.-H.
,
Chen
,
Y.
,
Lin
,
J.
, and
Liu
,
R.
,
2017
, “
Multivariate Multiscale Symbolic Entropy Analysis of Human Gait Signals
,”
Entropy
,
19
(
10
), p.
557
.10.3390/e19100557
28.
Eckmann
,
J. P.
,
Kamphorst
,
S. O.
, and
Ruelle
,
D.
,
1987
, “
Recurrence Plots of Dynamical Systems
,”
EPL
,
4
(
9
), pp.
973
977
.10.1209/0295-5075/4/9/004
29.
Webber
,
C. L.
Jr
, and
Zbilut
,
J. P.
,
1994
, “
Dynamical Assessment of Physiological Systems and States Using Recurrence Plot Strategies
,”
J. Appl. Physiol.
,
76
(
2
), pp.
965
973
.10.1152/jappl.1994.76.2.965
30.
Marwan
,
N.
,
2003
, “
Encounters With Neighbours: Current Developments of Concepts Based on Recurrence Plots and Their Applications
,”
Ph.D. thesis, University of Potsdam, Potsdam, Germany.
31.
Marwan
,
N.
,
Romano
,
M. C.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.10.1016/j.physrep.2006.11.001
32.
Litak
,
G.
,
Kamiński
,
T.
,
Rusinek
,
R.
,
Czarnigowski
,
J.
, and
Wendeker
,
M.
,
2008
, “
Patterns in the Combustion Process in a Spark Ignition Engine
,”
Chaos Soliton Fract.
,
35
(
3
), pp.
578
585
.10.1016/j.chaos.2006.05.053
33.
Marwan
,
N.
,
Wessel
,
N.
,
Meyerfeldt
,
U.
,
Schirdewan
,
A.
, and
Kurths
,
J.
,
2002
, “
Recurrence-Plot-Based Measures of Complexity and Their Application to Heart-Rate-Variability Data
,”
Phys. Rev. E
,
66
(
2
), p.
026702
.10.1103/PhysRevE.66.026702
You do not currently have access to this content.