Abstract

Considering that granular material is second only to water in how often it is handled in practical applications, characterizing its dynamics represents a ubiquitous problem. However, studying the motion of granular material poses stiff computational challenges. The underlying question in this contribution is whether a continuum representation of the granular material, established in the framework of the smoothed particle hydrodynamics (SPH) method, can provide a good proxy for the fully resolved granular dynamics solution. To this end, two approaches described herein were implemented to run on graphics processing unit (GPU) cards to solve the three-dimensional (3D) dynamics of the granular material via two solution methods: a discrete one, and a continuum one. The study concentrates on the case when the granular material is packed but shows fluid-like behavior under large strains. On the one hand, we solve the Newton–Euler equations of motion to fully resolve the motion of the granular system. On the other hand, we solve the Navier–Stokes equations to describe the evolution of the granular material when treated as a homogenized continuum. To demonstrate the similarities and differences between the multibody and fluid dynamics, we consider three representative problems: (i) a compressibility test (highlighting a static case); (ii) the classical dam break problem (highlighting high transients); and (iii) the dam break simulation with an obstacle (highlighting impact). These experiments provide insights into conditions under which one can expect similar macroscale behavior from multibody and fluid dynamics systems governed by manifestly different equations of motion and solved by vastly different numerical solution methods. The models and simulation platform used are publicly available and part of an open source code called Chrono. Timing results are reported to gauge the efficiency gains associated with treating the granular material as a continuum.

References

1.
Furuichi
,
M.
,
Nishiura
,
D.
,
Asai
,
M.
, and
Hori
,
T.
,
2017
, “
Poster: The First Real-Scale DEM Simulation of a Sandbox Experiment Using 2.4 Billion Particles
,”
Supercomputing Conference
, Denver, CO, Nov., Poster No. 21.
2.
Furuichi
,
M.
,
Nishiura
,
D.
,
Kuwano
,
O.
,
Bauville
,
A.
,
Hori
,
T.
, and
Sakaguchi
,
H.
,
2018
, “
Arcuate Stress State in Accretionary Prisms From Real-Scale Numerical Sandbox Experiments
,”
Nat. Sci. Rep.
,
8
(
1
), p.
12
.10.1038/s41598-018-26534-x
3.
Nishiura
,
D.
,
Sakaguchi
,
H.
, and
Yamamoto
,
S.
,
2018
, “
Multibillion Particle DEM to Simulate Centrifuge Model Tests of Geomaterials
,”
Physical Modelling in Geotechnics (Proceedings of the 9th International Conference on Physical Modelling in Geotechnics (ICPMG 2018))
, Vol.
1
,
CRC Press
,
London
, p.
227
.
4.
Strohmaier
,
E.
,
Dongarra
,
J.
,
Simon
,
H.
, and
Meuer
,
M.
, 1997, “TOP500 Supercomputer Sites,” Supercomputer, 13, pp.
89
111
.
5.
Lucy
,
L. B.
,
1977
, “
A Numerical Approach to the Testing of the Fission Hypothesis
,”
Astron. J.
,
82
, pp.
1013
1024
.10.1086/112164
6.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics-Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
7.
Cundall
,
P. A.
, and
Strack
,
O. D.
,
1979
, “
A Discrete Numerical Model for Granular Assemblies
,”
Geotechnique
,
29
(
1
), pp.
47
65
.10.1680/geot.1979.29.1.47
8.
Campbell
,
C. S.
,
1990
, “
Rapid Granular Flows
,”
Annu. Rev. Fluid Mech.
,
22
(
1
), pp.
57
90
.10.1146/annurev.fl.22.010190.000421
9.
Dunatunga
,
S.
, and
Kamrin
,
K.
,
2015
, “
Continuum Modelling and Simulation of Granular Flows Through Their Many Phases
,”
J. Fluid Mech.
,
779
(
9
), pp.
483
513
.10.1017/jfm.2015.383
10.
Jop
,
P.
,
Forterre
,
Y.
, and
Pouliquen
,
O.
,
2006
, “
A Constitutive Law for Dense Granular Flows
,”
Nature
,
441
(
7094
), pp.
727
730
.10.1038/nature04801
11.
Rojek
,
J.
, and
Oñate
,
E.
,
2008
, “
Multiscale Analysis Using a Coupled Discrete/Finite Element Model
,”
Interact. Multiscale Mech.
,
1
(
1
), pp.
1
31
.10.12989/imm.2008.1.1.001
12.
Andrade
,
J.
,
Avila
,
C.
,
Hall
,
S.
,
Lenoir
,
N.
, and
Viggiani
,
G.
,
2011
, “
Multiscale Modeling and Characterization of Granular Matter: From Grain Kinematics to Continuum Mechanics
,”
J. Mech. Phys. Solids
,
59
(
2
), pp.
237
250
.10.1016/j.jmps.2010.10.009
13.
Guo
,
N.
, and
Zhao
,
J.
,
2014
, “
A Coupled FEM/DEM Approach for Hierarchical Multiscale Modelling of Granular Media
,”
Int. J. Numer. Methods Eng.
,
99
(
11
), pp.
789
818
.10.1002/nme.4702
14.
Yamashita
,
H.
,
Chen
,
G.
,
Brauchler
,
A.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2018
, “
Computer Implementation of Hierarchical FE-DE Multiscale Approach for Modeling Deformable Soil in Multibody Dynamics Simulation
,”
ASME
Paper No. DETC2018-86110.10.1115/DETC2018-86110
15.
Henann
,
D. L.
, and
Kamrin
,
K.
,
2014
, “
Continuum Thermomechanics of the Nonlocal Granular Rheology
,”
Int. J. Numer. Methods Eng.
,
60
, pp.
145
162
.10.1016/j.ijplas.2014.05.002
16.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2016
, “
Chrono: An Open Source Multi-Physics Dynamics Engine
,”
High Performance Computing in Science and Engineering
(Lecture Notes in Computer Science),
T.
Kozubek
, ed.,
Springer
, Berlin, pp.
19
49
.
17.
Project Chrono
, 2019, “
Chrono: An Open Source Framework for the Physics-Based Simulation of Dynamic Systems
,” Project Chrono, University of Wisconsin-Madison, Madison, WI, accessed Mar. 7, 2019, https://projectchrono.org/
18.
Gurtin
,
M. E.
,
Fried
,
E.
, and
Anand
,
L.
,
2010
,
The Mechanics and Thermodynamics of Continua
,
Cambridge University Press
,
Cambridge, UK
.
19.
Pritchard
,
P. J.
, and
Mitchell
,
J. W.
,
2016
,
Fox and McDonald's Introduction to Fluid Mechanics, Binder Ready Version
,
Wiley
,
Hoboken, NJ
.
20.
Ragui
,
K.
,
Boutra
,
A.
,
Bennacer
,
R.
, and
Benkahla
,
Y. K.
,
2018
, “
Progress on Numerical Simulation of Yield Stress Fluid Flows (Part I): Correlating Thermosolutal Coefficients of Bingham Plastics Within a Porous Annulus of a Circular Shape
,”
Int. J. Heat Mass Transfer
,
126
, pp.
72
94
.10.1016/j.ijheatmasstransfer.2018.05.010
21.
Wallevik
,
J. E.
,
2014
, “
Effect of the Hydrodynamic Pressure on Shaft Torque for a 4-Blades Vane Rheometer
,”
Int. J. Heat Fluid Flow
,
50
, pp.
95
102
.10.1016/j.ijheatfluidflow.2014.06.001
22.
Lagrée
,
P.-Y.
,
Staron
,
L.
, and
Popinet
,
S.
,
2011
, “
The Granular Column Collapse as a Continuum: Validity of a Two-Dimensional Navier–Stokes Model With a μ (i)-Rheology
,”
J. Fluid Mech.
,
686
, pp.
378
408
.10.1017/jfm.2011.335
23.
Gray
,
J. P.
,
Monaghan
,
J. J.
, and
Swift
,
R.
,
2001
, “
SPH Elastic Dynamics
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
49–50
), pp.
6641
6662
.10.1016/S0045-7825(01)00254-7
24.
Monaghan
,
J. J.
,
2000
, “
SPH Without a Tensile Instability
,”
J. Comput. Phys.
,
159
(
2
), pp.
290
311
.10.1006/jcph.2000.6439
25.
Monaghan
,
J. J.
,
2005
, “
Smoothed Particle Hydrodynamics
,”
Rep. Prog. Phys.
,
68
(
8
), pp.
1703
1759
.10.1088/0034-4885/68/8/R01
26.
Chorin
,
A. J.
,
1968
, “
Numerical Solution of the Navier–Stokes Equations
,”
Math. Comput.
,
22
(
104
), pp.
745
762
.10.1090/S0025-5718-1968-0242392-2
27.
Liu
,
G.
, and
Liu
,
M. B.
,
2003
,
Smoothed Particle Hydrodynamics: A Meshfree Particle Method
,
World Scientific Pub
,
Singapore
.
28.
Adami
,
S.
,
Hu
,
X.
, and
Adams
,
N.
,
2012
, “
A Generalized Wall Boundary Condition for Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
231
(
21
), pp.
7057
7075
.10.1016/j.jcp.2012.05.005
29.
Zhou
,
Y.
,
Xu
,
B.
,
Yu
,
A.
, and
Zulli
,
P.
,
2002
, “
An Experimental and Numerical Study of the Angle of Repose of Coarse Spheres
,”
Powder Technol.
,
125
(
1
), pp.
45
54
.10.1016/S0032-5910(01)00520-4
30.
Oda
,
M.
, and
Iwashita
,
K.
,
2000
, “
Study on Couple Stress and Shear Band Development in Granular Media Based on Numerical Simulation Analyses
,”
Int. J. Eng. Sci.
,
38
(
15
), pp.
1713
1740
.10.1016/S0020-7225(99)00132-9
31.
Ai
,
J.
,
Chen
,
J.-F.
,
Rotter
,
J. M.
, and
Ooi
,
J. Y.
,
2011
, “
Assessment of Rolling Resistance Models in Discrete Element Simulations
,”
Powder Technol.
,
206
(
3
), pp.
269
282
.10.1016/j.powtec.2010.09.030
32.
Geer
,
S.
,
Bernhardt-Barry
,
M.
,
Garboczi
,
E.
,
Whiting
,
J.
, and
Donmez
,
A.
,
2018
, “
A More Efficient Method for Calibrating Discrete Element Method Parameters for Simulations of Metallic Powder Used in Additive Manufacturing
,”
Granular Matter
,
20
(
4
), p.
77
.10.1007/s10035-018-0848-4
33.
Hairer
,
E.
,
Norsett
,
S.
, and
Wanner
,
G.
,
2009
,
Solving Ordinary Differential Equations I: Nonstiff Problems
,
Springer
,
Berlin
.
34.
Chung
,
J.
, and
Lee
,
J. M.
,
1994
, “
A New Family of Explicit Time Integration Methods for Linear and Non-Linear Structural Dynamics
,”
Int. J. Numer. Methods Eng.
,
37
(
23
), pp.
3961
3976
.10.1002/nme.1620372303
35.
Project Chrono Development Team
. Chrono: An Open Source Framework for the Physics-Based Simulation of Dynamic Systems. Accessed: 2019-12-07.
36.
Kelly
,
C.
,
Olsen
,
N.
, and
Negrut
,
D.
,
2019
, “
Billion Degree-of-Freedom Granular Dynamics Simulation on Commodity Hardware
,”
ASME Paper No. DETC2019-98055
.10.1115/DETC2019-98055
37.
Mazhar
,
H.
,
Pazouki
,
A.
,
Rakhsha
,
M.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2018
, “
A Differential Variational Approach for Handling Fluid-Solid Interaction Problems Via Smoothed Particle Hydrodynamics
,”
J. Comput. Phys.
,
371
, pp.
92
119
.10.1016/j.jcp.2018.05.013
38.
Rakhsha
,
M.
,
Pazouki
,
A.
,
Serban
,
R.
, and
Negrut
,
D.
,
2019
, “
Using a Half-Implicit Integration Scheme for the SPH-Based Solution of Fluid-Solid Interaction Problems
,”
Comput. Methods Appl. Mech. Eng.
,
345
, pp.
100
122
.10.1016/j.cma.2018.09.027
You do not currently have access to this content.