Abstract

This paper is aimed to investigate a stochastic predator-prey model with disease in both species, which is also considered with ratio-dependent type functional response and nonlinear incidence rate. First, the existence and uniqueness of positive solution is discussed. Then, some sufficient conditions are established to ensure the solution is stochastically ultimate boundedness and permanent. Also, the extinction of susceptible prey, infected prey, susceptible predator and infected predator are analyzed, respectively. Furthermore, the boundedness of moments and upper-growth rate estimation are investigated. Finally, numerical simulations are given to illustrate our main results.

References

1.
Xu
,
R.
,
2012
, “
Global Stability and Hopf Bifurcation of a Predator-Prey Model With Stage Structure and Delayed Predator Response
,”
Nonlinear Anal. Theory Methods Appl.
,
67
(
2
), pp.
1683
1693
.10.1007/s11071-011-0096-1
2.
Sun
,
G. Q.
,
Sun
,
Z.
,
Li
,
L.
, and
Li
,
B. L.
,
2010
, “
Self-Organized Wave Pattern in a Predator-Prey Model
,”
Nonlinear Dyn.
,
60
(
3
), pp.
265
275
.10.1007/s11071-009-9594-9
3.
Sadhu
,
S.
, and
Kuehn
,
C.
,
2018
, “
Stochastic Mixed-Mode Oscillations in a Three-Species Predator-Prey Model
,”
Chaos
,
28
(
3
), p.
033606
.10.1063/1.4994830
4.
Lajmiri
,
Z.
,
Khoshsiar
,
G. R.
, and
Orak
,
I.
,
2018
, “
Bifurcation and Stability Analysis of a Ratio-Dependent Predator-Prey Model With Predator Harvesting Rate
,”
Chaos Solitons Fractals
,
106
, pp.
193
200
.10.1016/j.chaos.2017.10.023
5.
Shi
,
R. Q.
, and
Chen
,
L. S.
,
2009
, “
The Study of a Ratio-Dependent Predator-Prey Model With Stage Structure in the Prey
,”
Nonlinear Dyn
,
58
(
1–2
), pp.
443
451
.10.1007/s11071-009-9491-2
6.
Pei
,
Y. Z.
,
Li
,
S. P.
, and
Li
,
C. G.
,
2011
, “
Effect of Delay on a Predator-Prey Model With Parasitic Infection
,”
Nonlinear Dyn.
,
63
, pp.
311
321
.10.1007/s11071-010-9805-4
7.
Liu
,
Q.
,
Jiang
,
D.
,
Hayat
,
T.
, and
Alsaedi
,
A.
,
2018
, “
Dynamics of a Stochastic Predator-Prey Model With Stage Structure for Predator and Holling Type ii Functional Response
,”
J. Nonlinear Sci.
,
28
(
3
), pp.
1151
1187
.10.1007/s00332-018-9444-3
8.
Gao
,
X. Y.
,
Ishag
,
S.
,
Fu
,
S. M.
,
Li
,
W. J.
, and
Wang
,
W. M.
,
2020
, “
Bifurcation and Turing Pattern Formation in a Diffusive Ratio-Dependent Predator-Prey Model With Predator Harvesting
,”
Nonlinear Anal. RWA
,
51
, p.
102962
.10.1016/j.nonrwa.2019.102962
9.
Liu
,
Q.
,
Jiang
,
D. Q.
,
Tasawar
,
H.
, and
Ahmed
,
A.
,
2019
, “
Dynamics of a Stochastic Sir Epidemic Model With Distributed Delay and Degenerate Diffusion
,”
J. Frankl. Inst.
,
356
(
13
), pp.
7347
7370
.10.1016/j.jfranklin.2019.06.030
10.
Zhao
,
L.
,
Wang
,
Z. C.
, and
Ruan
,
S. G.
,
2018
, “
Traveling Wave Solutions in a Two-Group Sir Epidemic Model With Constant Recruitment
,”
J. Math. Biol.
,
77
(
6–7
), pp.
1871
1915
.10.1007/s00285-018-1227-9
11.
Liu
,
L.
,
Luo
,
X. F.
, and
Chang
,
L. L.
,
2017
, “
Vaccination Strategies of an Sir Pair Approximation Model With Demographics on Complex Networks
,”
Chaos Solitons Fractals
,
104
(
2
), pp.
282
290
.10.1016/j.chaos.2017.08.019
12.
Meng
,
X. Z.
,
Li
,
Z. Q.
, and
Wang
,
X. L.
,
2010
, “
Dynamics of a Novel Nonlinear Sir Model With Double Epidemic Hypothesis and Impulsive Effects
,”
Nonlinear Dyn.
,
59
(
3
), pp.
503
513
.10.1007/s11071-009-9557-1
13.
Xia
,
C. Y.
,
Wang
,
L.
,
Sun
,
S. W.
, and
Wang
,
J.
,
2012
, “
An Sir Model With Infection Delay and Propagation Vector in Complex Networks
,”
Nonlinear Dyn.
,
69
(
3
), pp.
927
934
.10.1007/s11071-011-0313-y
14.
Li
,
Y.
,
Ye
,
M.
, and
Zhang
,
Q. M.
,
2019
, “
Strong Convergence of the Partially Truncated Euler-Maruyama Scheme for a Stochastic Age-Structured Sir Epidemic Model
,”
Appl. Math. Comput.
,
362
, p.
124519
.10.1016/j.amc.2019.06.033
15.
Kevin
,
E. M. C.
, and
Liu
,
X. Z.
,
2019
, “
Analysis of a Sir Model With Pulse Vaccination and Temporary Immunity: Stability, Bifurcation and a Cylindrical Attractor
,”
Nonlinear Anal. RWA
,
50
, pp.
240
266
.10.1016/j.nonrwa.2019.04.015
16.
Luo
,
Y. T.
,
Tang
,
S. T.
,
Teng
,
Z. D.
, and
Zhang
,
L.
,
2019
, “
Global Dynamics in a Reaction-Diffusion Multi-Group Sir Epidemic Model With Nonlinear Incidence
,”
Nonlinear Anal. RWA
,
50
, pp.
365
385
.10.1016/j.nonrwa.2019.05.008
17.
Liu
,
Q.
, and
Jiang
,
D. Q.
,
2017
, “
Stationary Distribution and Extinction of a Stochastic Sir Model With Nonlinear Perturbation
,”
Appl. Math. Lett.
,
73
, pp.
8
15
.10.1016/j.aml.2017.04.021
18.
Mortoja
,
S. G.
,
Prabir
,
P.
, and
Mondal
,
S. K.
,
2019
, “
Dynamics of a Predator-Prey Model With Nonlinear Incidence Rate, Crowley-Martin Type Functional Response and Disease in Prey Population
,”
Ecol. Genet. Genomics
,
10
, p.
100035
.10.1016/j.egg.2018.100035
19.
Debadatta
,
A.
, and
Nandadulal
,
B.
,
2015
, “
Complexity in a Predator-Prey-Parasite Model With Nonlinear Incidence Rate and Incubation Delay
,”
Chaos Solitons Fractals
,
81
, pp.
271
289
.10.1016/j.chaos.2015.09.028
20.
Mbava
,
W.
,
Mugisha
,
J. Y. T.
, and
Gonsalves
,
J. W.
,
2017
, “
Prey, Predator and Super-Predator Model With Disease in the Super-Predator
,”
Appl. Math. Comput.
,
297
(
1–2
), pp.
92
114
.
21.
Xiao
,
Y. N.
, and
Chen
,
L. S.
,
2001
, “
Modeling and Analysis of a Predator-Prey Model With Disease in the Prey
,”
Math. Biosci.
,
171
(
1
), pp.
59
82
.10.1016/S0025-5564(01)00049-9
22.
Zhang
,
X.
,
Huang
,
Y. H.
, and
Weng
,
P. Y.
,
2014
, “
Permanence and Stability of a Diffusive Predator-Prey Model With Disease in the Prey
,”
Comput. Math. Appl.
,
68
(
10
), pp.
1431
1445
.10.1016/j.camwa.2014.09.011
23.
Kumar
,
S.
,
Ahmadian
,
A.
,
Kumar
,
R.
,
Kumar
,
D.
,
Salimi
,
M.
,
Baleanu
,
D.
, and
Salimi
,
M.
,
2020
, “
An Efficient Numerical Method for Fractional Sir Epidemic Model of Infectious Disease by Using Bernstein Wavelets
,”
Mathematics
,
8
(
4
), p.
558
.10.3390/math8040558
24.
Ghanbari
,
B.
,
Kumar
,
D.
, and
Singh
,
J.
,
2020
, “
An Efficient Numerical Method for Fractional Model of Allelopathic Stimulatory Phytoplankton Species With Mittag-Leffler Law
,”
Discrete Contin. Dyn. Syst. Ser. S
,
14
(
10
), pp.
3577
3587
.10.3934/dcdss.2020428
25.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
,
2020
, “
A New Analysis of Fractional Fish Farm Model Associated With Mittag-Leffler Type Kernel
,”
Int. J. Biomath.
,
13
(
02
), p.
2050010
.10.1142/S1793524520500102
26.
Xu
,
R.
,
Chaplain
,
M. A. J.
, and
Davidson
,
F. A.
,
2004
, “
Persistence and Global Stability of a Ratio-Dependent Predator-Prey Model With Stage Structure
,”
Appl. Math. Comput.
,
158
(
3
), pp.
729
744
.10.1016/j.amc.2003.10.012
27.
Li
,
W. J.
,
Ji
,
J. C.
, and
H
,
H. L.
,
2020
, “
Global Dynamic Behavior of a Predatorcprey Model Under Ratio-Dependent State Impulsive Control
,”
Appl. Math. Model.
,
77
, pp.
1842
1859
.10.1016/j.apm.2019.09.033
28.
Yang
,
R. Z.
,
Liu
,
M.
, and
Zhang
,
C. R.
,
2017
, “
A Delayed-Diffusive Predator-Prey Model With a Ratio-Dependent Functional Response
,”
Commun. Nonlinear Sci. Numer. Simul.
,
53
(
1
), pp.
94
110
.10.1016/j.cnsns.2017.04.034
29.
Chen
,
M. X.
,
Wu
,
R. C.
,
Liu
,
B.
, and
Chen
,
L. P.
,
2019
, “
Spatiotemporal Dynamics in a Ratio-Dependent Predator-Prey Model With Time Delay Near the Turingchopf Bifurcation Point
,”
Commun. Nonlinear Sci. Numer. Simul.
,
77
, pp.
141
167
.10.1016/j.cnsns.2019.04.024
30.
Kermack, W. O., and McKendrick, A. G., 1991. “Contributions to the Mathematical Theory of Epidemics i,” Bull. Math. Biol., 53(1–2), pp.
33
55
.
31.
Kermack
,
W. O.
, and
McKendrick
,
A. G.
,
1991
, “
Contributions to the Mathematical Theory of Epidemics i”. Further Studies of the Problem of Endemicity
,”
Bull. Math. Biol.
,
53
(
1–2
), pp.
89
118
.10.1016/S0092-8240(05)80042-4
32.
Lotka
,
A.
,
1956
,
Elements of Mathematical Biology
,
Dover Publications
,
New York
.
33.
Capasso
,
V.
, and
Serio
,
G.
,
1978
, “
A Generalization of the Kermack-Mckendrick Deterministic Epidemic Model
,”
Math. Biosci.
,
42
(
1–2
), pp.
43
61
.10.1016/0025-5564(78)90006-8
34.
Cai
,
Y. L.
,
Kang
,
Y.
, and
Wang
,
W. M.
,
2017
, “
A Stochastic Sirs Epidemic Model With Nonlinear Incidence Rate
,”
Appl. Math. Comput.
,
305
, pp.
221
240
10.1016/j.amc.2017.02.003.
35.
May
,
R. M.
,
1973
,
Stability and Complexity in Model Ecosystems
,
Princeton University Press
, Princeton, NJ.
36.
Liu
,
Q.
,
Jiang
,
D. Q.
,
Tasawar
,
H.
, and
Bashir
,
A.
,
2018
, “
Stationary Distribution and Extinction of a Stochastic Predatorcprey Model With Additional Food and Nonlinear Perturbation
,”
Appl. Math. Comput.
,
320
, pp.
226
239
.10.1016/j.amc.2017.09.030
37.
Liu
,
M.
,
He
,
X.
, and
Yu
,
J. Y.
,
2018
, “
Dynamics of a Stochastic Regime-Switching Predator-Prey Model With Harvesting and Distributed Delays
,”
Nonlinear Anal.-Hybrid Syst.
,
28
, pp.
87
104
.10.1016/j.nahs.2017.10.004
38.
Liu
,
M.
,
Du
,
C. X.
, and
Deng
,
M. L.
,
2018
, “
Persistence and Extinction of a Modified Leslie-Gower Holling-Type ii Stochastic Predatorcprey Model With Impulsive Toxicant Input in Polluted Environments
,”
Nonlinear Anal.-Hybrid Syst.
,
27
(
9
), pp.
177
190
.10.1016/j.nahs.2017.08.001
39.
Geng
,
J.
,
Liu
,
M.
, and
Zhang
,
Y. Q.
,
2017
, “
Stability of a Stochastic One-Predator-Two-Prey Population Model With Time Delays
,”
Commun. Nonlinear Sci. Numer. Simul.
,
53
, pp.
65
82
.10.1016/j.cnsns.2017.04.022
40.
Imhof
,
L.
, and
Walcher
,
S.
,
2005
, “
Exclusion and Persistence in Deterministic and Stochastic Chemostat Models
,”
J. Diff. Eqs.
,
217
(
1
), pp.
26
53
.10.1016/j.jde.2005.06.017
41.
Mao
,
X. R.
,
1997
,
Stochastic Differential Equations and Their Applications
,
Horwood, Chichester, UK
.
42.
Jiang
,
D. Q.
, and
Shi
,
N. Z.
,
2005
, “
A Note on Nonautonomous Logistic Equation With Random Perturbation
,”
J. Math. Anal. Appl.
,
303
(
1
), pp.
164
172
.10.1016/j.jmaa.2004.08.027
43.
Liu
,
M.
, and
Wang
,
K.
,
2011
, “
Persistence and Extinction in Stochastic Non-Autonomous Logistic Systems
,”
J. Math. Anal. Appl.
,
375
(
2
), pp.
443
457
.10.1016/j.jmaa.2010.09.058
44.
Mao
,
X. R.
,
Yuan
,
C. G.
, and
Zou
,
J. Z.
,
2005
, “
Stochastic Differential Delay Equations of Population Dynamics
,”
J. Math. Anal. Appl.
,
304
(
1
), pp.
296
320
.10.1016/j.jmaa.2004.09.027
45.
Liu
,
M.
, and
Fan
,
M.
,
2017
, “
Permanence of Stochastic Lotka-Volterra Systems
,”
J. Nonlinear. Sci.
,
27
(
2
), pp.
425
452
.10.1007/s00332-016-9337-2
46.
Higham
,
D. J.
,
2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,”
SIAM Rev.
,
43
, pp.
525
546
.10.1137/S0036144500378302
You do not currently have access to this content.