Abstract
This paper is aimed to investigate a stochastic predator-prey model with disease in both species, which is also considered with ratio-dependent type functional response and nonlinear incidence rate. First, the existence and uniqueness of positive solution is discussed. Then, some sufficient conditions are established to ensure the solution is stochastically ultimate boundedness and permanent. Also, the extinction of susceptible prey, infected prey, susceptible predator and infected predator are analyzed, respectively. Furthermore, the boundedness of moments and upper-growth rate estimation are investigated. Finally, numerical simulations are given to illustrate our main results.
Issue Section:
Research Papers
References
1.
Xu
,
R.
, 2012
, “
Global Stability and Hopf Bifurcation of a Predator-Prey Model With Stage Structure and Delayed Predator Response
,” Nonlinear Anal. Theory Methods Appl.
,
67
(2
), pp. 1683
–1693
.10.1007/s11071-011-0096-12.
Sun
,
G. Q.
,
Sun
,
Z.
,
Li
,
L.
, and
Li
,
B. L.
, 2010
, “
Self-Organized Wave Pattern in a Predator-Prey Model
,” Nonlinear Dyn.
,
60
(3
), pp. 265
–275
.10.1007/s11071-009-9594-93.
Sadhu
,
S.
, and
Kuehn
,
C.
, 2018
, “
Stochastic Mixed-Mode Oscillations in a Three-Species Predator-Prey Model
,” Chaos
,
28
(3
), p. 033606
.10.1063/1.49948304.
Lajmiri
,
Z.
,
Khoshsiar
,
G. R.
, and
Orak
,
I.
, 2018
, “
Bifurcation and Stability Analysis of a Ratio-Dependent Predator-Prey Model With Predator Harvesting Rate
,” Chaos Solitons Fractals
,
106
, pp. 193
–200
.10.1016/j.chaos.2017.10.0235.
Shi
,
R. Q.
, and
Chen
,
L. S.
, 2009
, “
The Study of a Ratio-Dependent Predator-Prey Model With Stage Structure in the Prey
,” Nonlinear Dyn
,
58
(1–2
), pp. 443
–451
.10.1007/s11071-009-9491-26.
Pei
,
Y. Z.
,
Li
,
S. P.
, and
Li
,
C. G.
, 2011
, “
Effect of Delay on a Predator-Prey Model With Parasitic Infection
,” Nonlinear Dyn.
,
63
, pp. 311
–321
.10.1007/s11071-010-9805-47.
Liu
,
Q.
,
Jiang
,
D.
,
Hayat
,
T.
, and
Alsaedi
,
A.
, 2018
, “
Dynamics of a Stochastic Predator-Prey Model With Stage Structure for Predator and Holling Type ii Functional Response
,” J. Nonlinear Sci.
,
28
(3
), pp. 1151
–1187
.10.1007/s00332-018-9444-38.
Gao
,
X. Y.
,
Ishag
,
S.
,
Fu
,
S. M.
,
Li
,
W. J.
, and
Wang
,
W. M.
, 2020
, “
Bifurcation and Turing Pattern Formation in a Diffusive Ratio-Dependent Predator-Prey Model With Predator Harvesting
,” Nonlinear Anal. RWA
,
51
, p. 102962
.10.1016/j.nonrwa.2019.1029629.
Liu
,
Q.
,
Jiang
,
D. Q.
,
Tasawar
,
H.
, and
Ahmed
,
A.
, 2019
, “
Dynamics of a Stochastic Sir Epidemic Model With Distributed Delay and Degenerate Diffusion
,” J. Frankl. Inst.
,
356
(13
), pp. 7347
–7370
.10.1016/j.jfranklin.2019.06.03010.
Zhao
,
L.
,
Wang
,
Z. C.
, and
Ruan
,
S. G.
, 2018
, “
Traveling Wave Solutions in a Two-Group Sir Epidemic Model With Constant Recruitment
,” J. Math. Biol.
,
77
(6–7
), pp. 1871
–1915
.10.1007/s00285-018-1227-911.
Liu
,
L.
,
Luo
,
X. F.
, and
Chang
,
L. L.
, 2017
, “
Vaccination Strategies of an Sir Pair Approximation Model With Demographics on Complex Networks
,” Chaos Solitons Fractals
,
104
(2
), pp. 282
–290
.10.1016/j.chaos.2017.08.01912.
Meng
,
X. Z.
,
Li
,
Z. Q.
, and
Wang
,
X. L.
, 2010
, “
Dynamics of a Novel Nonlinear Sir Model With Double Epidemic Hypothesis and Impulsive Effects
,” Nonlinear Dyn.
,
59
(3
), pp. 503
–513
.10.1007/s11071-009-9557-113.
Xia
,
C. Y.
,
Wang
,
L.
,
Sun
,
S. W.
, and
Wang
,
J.
, 2012
, “
An Sir Model With Infection Delay and Propagation Vector in Complex Networks
,” Nonlinear Dyn.
,
69
(3
), pp. 927
–934
.10.1007/s11071-011-0313-y14.
Li
,
Y.
,
Ye
,
M.
, and
Zhang
,
Q. M.
, 2019
, “
Strong Convergence of the Partially Truncated Euler-Maruyama Scheme for a Stochastic Age-Structured Sir Epidemic Model
,” Appl. Math. Comput.
,
362
, p. 124519
.10.1016/j.amc.2019.06.03315.
Kevin
,
E. M. C.
, and
Liu
,
X. Z.
, 2019
, “
Analysis of a Sir Model With Pulse Vaccination and Temporary Immunity: Stability, Bifurcation and a Cylindrical Attractor
,” Nonlinear Anal. RWA
,
50
, pp. 240
–266
.10.1016/j.nonrwa.2019.04.01516.
Luo
,
Y. T.
,
Tang
,
S. T.
,
Teng
,
Z. D.
, and
Zhang
,
L.
, 2019
, “
Global Dynamics in a Reaction-Diffusion Multi-Group Sir Epidemic Model With Nonlinear Incidence
,” Nonlinear Anal. RWA
,
50
, pp. 365
–385
.10.1016/j.nonrwa.2019.05.00817.
Liu
,
Q.
, and
Jiang
,
D. Q.
, 2017
, “
Stationary Distribution and Extinction of a Stochastic Sir Model With Nonlinear Perturbation
,” Appl. Math. Lett.
,
73
, pp. 8
–15
.10.1016/j.aml.2017.04.02118.
Mortoja
,
S. G.
,
Prabir
,
P.
, and
Mondal
,
S. K.
, 2019
, “
Dynamics of a Predator-Prey Model With Nonlinear Incidence Rate, Crowley-Martin Type Functional Response and Disease in Prey Population
,” Ecol. Genet. Genomics
,
10
, p. 100035
.10.1016/j.egg.2018.10003519.
Debadatta
,
A.
, and
Nandadulal
,
B.
, 2015
, “
Complexity in a Predator-Prey-Parasite Model With Nonlinear Incidence Rate and Incubation Delay
,” Chaos Solitons Fractals
,
81
, pp. 271
–289
.10.1016/j.chaos.2015.09.02820.
Mbava
,
W.
,
Mugisha
,
J. Y. T.
, and
Gonsalves
,
J. W.
, 2017
, “
Prey, Predator and Super-Predator Model With Disease in the Super-Predator
,” Appl. Math. Comput.
,
297
(1–2
), pp. 92
–114
.21.
Xiao
,
Y. N.
, and
Chen
,
L. S.
, 2001
, “
Modeling and Analysis of a Predator-Prey Model With Disease in the Prey
,” Math. Biosci.
,
171
(1
), pp. 59
–82
.10.1016/S0025-5564(01)00049-922.
Zhang
,
X.
,
Huang
,
Y. H.
, and
Weng
,
P. Y.
, 2014
, “
Permanence and Stability of a Diffusive Predator-Prey Model With Disease in the Prey
,” Comput. Math. Appl.
,
68
(10
), pp. 1431
–1445
.10.1016/j.camwa.2014.09.01123.
Kumar
,
S.
,
Ahmadian
,
A.
,
Kumar
,
R.
,
Kumar
,
D.
,
Salimi
,
M.
,
Baleanu
,
D.
, and
Salimi
,
M.
, 2020
, “
An Efficient Numerical Method for Fractional Sir Epidemic Model of Infectious Disease by Using Bernstein Wavelets
,” Mathematics
,
8
(4
), p. 558
.10.3390/math804055824.
Ghanbari
,
B.
,
Kumar
,
D.
, and
Singh
,
J.
, 2020
, “
An Efficient Numerical Method for Fractional Model of Allelopathic Stimulatory Phytoplankton Species With Mittag-Leffler Law
,” Discrete Contin. Dyn. Syst. Ser. S
,
14
(10
), pp. 3577
–3587
.10.3934/dcdss.202042825.
Singh
,
J.
,
Kumar
,
D.
, and
Baleanu
,
D.
, 2020
, “
A New Analysis of Fractional Fish Farm Model Associated With Mittag-Leffler Type Kernel
,” Int. J. Biomath.
,
13
(02
), p. 2050010
.10.1142/S179352452050010226.
Xu
,
R.
,
Chaplain
,
M. A. J.
, and
Davidson
,
F. A.
, 2004
, “
Persistence and Global Stability of a Ratio-Dependent Predator-Prey Model With Stage Structure
,” Appl. Math. Comput.
,
158
(3
), pp. 729
–744
.10.1016/j.amc.2003.10.01227.
Li
,
W. J.
,
Ji
,
J. C.
, and
H
,
H. L.
, 2020
, “
Global Dynamic Behavior of a Predatorcprey Model Under Ratio-Dependent State Impulsive Control
,” Appl. Math. Model.
,
77
, pp. 1842
–1859
.10.1016/j.apm.2019.09.03328.
Yang
,
R. Z.
,
Liu
,
M.
, and
Zhang
,
C. R.
, 2017
, “
A Delayed-Diffusive Predator-Prey Model With a Ratio-Dependent Functional Response
,” Commun. Nonlinear Sci. Numer. Simul.
,
53
(1
), pp. 94
–110
.10.1016/j.cnsns.2017.04.03429.
Chen
,
M. X.
,
Wu
,
R. C.
,
Liu
,
B.
, and
Chen
,
L. P.
, 2019
, “
Spatiotemporal Dynamics in a Ratio-Dependent Predator-Prey Model With Time Delay Near the Turingchopf Bifurcation Point
,” Commun. Nonlinear Sci. Numer. Simul.
,
77
, pp. 141
–167
.10.1016/j.cnsns.2019.04.02430.
Kermack, W. O., and McKendrick, A. G., 1991. “Contributions to the Mathematical Theory of Epidemics i,” Bull. Math. Biol., 53(1–2), pp.
33
–55
.31.
Kermack
,
W. O.
, and
McKendrick
,
A. G.
, 1991
, “
Contributions to the Mathematical Theory of Epidemics i”. Further Studies of the Problem of Endemicity
,” Bull. Math. Biol.
,
53
(1–2
), pp. 89
–118
.10.1016/S0092-8240(05)80042-432.
Lotka
,
A.
, 1956
, Elements of Mathematical Biology
,
Dover Publications
,
New York
.33.
Capasso
,
V.
, and
Serio
,
G.
, 1978
, “
A Generalization of the Kermack-Mckendrick Deterministic Epidemic Model
,” Math. Biosci.
,
42
(1–2
), pp. 43
–61
.10.1016/0025-5564(78)90006-834.
Cai
,
Y. L.
,
Kang
,
Y.
, and
Wang
,
W. M.
, 2017
, “
A Stochastic Sirs Epidemic Model With Nonlinear Incidence Rate
,” Appl. Math. Comput.
,
305
, pp. 221
–240
10.1016/j.amc.2017.02.003.35.
May
,
R. M.
, 1973
, Stability and Complexity in Model Ecosystems
,
Princeton University Press
, Princeton, NJ.36.
Liu
,
Q.
,
Jiang
,
D. Q.
,
Tasawar
,
H.
, and
Bashir
,
A.
, 2018
, “
Stationary Distribution and Extinction of a Stochastic Predatorcprey Model With Additional Food and Nonlinear Perturbation
,” Appl. Math. Comput.
,
320
, pp. 226
–239
.10.1016/j.amc.2017.09.03037.
Liu
,
M.
,
He
,
X.
, and
Yu
,
J. Y.
, 2018
, “
Dynamics of a Stochastic Regime-Switching Predator-Prey Model With Harvesting and Distributed Delays
,” Nonlinear Anal.-Hybrid Syst.
,
28
, pp. 87
–104
.10.1016/j.nahs.2017.10.00438.
Liu
,
M.
,
Du
,
C. X.
, and
Deng
,
M. L.
, 2018
, “
Persistence and Extinction of a Modified Leslie-Gower Holling-Type ii Stochastic Predatorcprey Model With Impulsive Toxicant Input in Polluted Environments
,” Nonlinear Anal.-Hybrid Syst.
,
27
(9
), pp. 177
–190
.10.1016/j.nahs.2017.08.00139.
Geng
,
J.
,
Liu
,
M.
, and
Zhang
,
Y. Q.
, 2017
, “
Stability of a Stochastic One-Predator-Two-Prey Population Model With Time Delays
,” Commun. Nonlinear Sci. Numer. Simul.
,
53
, pp. 65
–82
.10.1016/j.cnsns.2017.04.02240.
Imhof
,
L.
, and
Walcher
,
S.
, 2005
, “
Exclusion and Persistence in Deterministic and Stochastic Chemostat Models
,” J. Diff. Eqs.
,
217
(1
), pp. 26
–53
.10.1016/j.jde.2005.06.01741.
Mao
,
X. R.
, 1997
, Stochastic Differential Equations and Their Applications
,
Horwood, Chichester, UK
.42.
Jiang
,
D. Q.
, and
Shi
,
N. Z.
, 2005
, “
A Note on Nonautonomous Logistic Equation With Random Perturbation
,” J. Math. Anal. Appl.
,
303
(1
), pp. 164
–172
.10.1016/j.jmaa.2004.08.02743.
Liu
,
M.
, and
Wang
,
K.
, 2011
, “
Persistence and Extinction in Stochastic Non-Autonomous Logistic Systems
,” J. Math. Anal. Appl.
,
375
(2
), pp. 443
–457
.10.1016/j.jmaa.2010.09.05844.
Mao
,
X. R.
,
Yuan
,
C. G.
, and
Zou
,
J. Z.
, 2005
, “
Stochastic Differential Delay Equations of Population Dynamics
,” J. Math. Anal. Appl.
,
304
(1
), pp. 296
–320
.10.1016/j.jmaa.2004.09.02745.
Liu
,
M.
, and
Fan
,
M.
, 2017
, “
Permanence of Stochastic Lotka-Volterra Systems
,” J. Nonlinear. Sci.
,
27
(2
), pp. 425
–452
.10.1007/s00332-016-9337-246.
Higham
,
D. J.
, 2001
, “
An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations
,” SIAM Rev.
,
43
, pp. 525
–546
.10.1137/S0036144500378302Copyright © 2021 by ASME
You do not currently have access to this content.