Abstract

This article investigates the nonlinear normal modes (NNMs) of a three degrees-of-freedom cyclically symmetric system with bilinear contact springs. Further, two different cases of zero and nonzero clearance are assumed for the contact model. These systems are found to exhibit qualitatively different characteristics. Interestingly, the former system admits positive-scaling of solutions, which is reminiscent of linear systems. Four classes of NNMs are found for both zero and nonzero clearance. The NNM solutions are calculated using analytical or numerical techniques. The analytical solution involves solving the equations of motion using appropriate ansatzes, while the numerical solution uses a shooting-based continuation scheme. The NNMs' features and their variations with contact spring stiffness and system energy are also studied. This study highlights certain simplifications applicable to cyclically symmetric structures with contact. These simplifications will be of practical interest for designing real-life structures.

References

1.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
. 0610.1115/1.3643948
2.
Rosenberg
,
R. M.
,
1962
, “
The Normal Modes of Nonlinear n-Degree-of-Freedom Systems
,”
ASME J. Appl. Mech.
,
29
(
1
), pp.
7
14
.10.1115/1.3636501
3.
Rosenberg
,
R.
,
1966
, “
On Nonlinear Vibrations of Systems With Many Degrees of Freedom
,”
In Advances in Applied Mechanics
, Vol.
9
,
Elsevier
, Cambridge, MA, pp.
155
242
.
4.
Vakakis
,
A.
,
1997
, “
Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: An Overview
,”
Mech. Syst. Signal Process.
,
11
(
1
), pp.
3
22
.10.1006/mssp.1996.9999
5.
Vakakis
,
A. F.
,
Manevitch
,
L. I.
,
Mikhlin
,
Y. V.
,
Pilipchuk
,
V. N.
, and
Zevin
,
A. A.
,
2001
,
Normal Modes and Localization in Nonlinear Systems
,
Springer
, Dordrecht, The Netherlands.
6.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J.-C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part I: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
7.
Avramov
,
K. V.
, and
Mikhlin
,
Y. V.
,
2013
, “
Review of Applications of Nonlinear Normal Modes for Vibrating Mechanical Systems
,”
ASME Appl. Mech. Rev.
,
65
(
2
), p. 020801.10.1115/1.4023533
8.
Hill
,
T.
,
Cammarano
,
A.
,
Neild
,
S.
, and
Barton
,
D.
,
2017
, “
Identifying the Significance of Nonlinear Normal Modes
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
473
(
2199
), p.
20160789
.10.1098/rspa.2016.0789
9.
Renson
,
L.
,
Kerschen
,
G.
, and
Cochelin
,
B.
,
2016
, “
Numerical Computation of Nonlinear Normal Modes in Mechanical Engineering
,”
J. Sound Vib.
,
364
, pp.
177
206
.10.1016/j.jsv.2015.09.033
10.
Nan
,
G.
,
2016
, “
Modeling and Dynamic Analysis of Shrouded Turbine Blades in Aero-Engines
,”
J. Aerosp. Eng.
,
29
(
1
), p.
04015021
.10.1061/(ASCE)AS.1943-5525.0000510
11.
He
,
B.
,
Ouyang
,
H.
,
He
,
S.
,
Ren
,
X.
, and
Mei
,
Y.
,
2018
, “
Dynamic Analysis of Integrally Shrouded Group Blades With Rubbing and Impact
,”
Nonlinear Dyn.
,
92
(
4
), pp.
2159
2175
.10.1007/s11071-018-4187-0
12.
Vakakis
,
A.
,
1992
, “
Dynamics of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
Acta Mech.
,
95
(
1–4
), pp.
197
226
.10.1007/BF01170813
13.
King
,
M. E.
, and
Vakakis
,
A. F.
,
1995
, “
A Very Complicated Structure of Resonances in a Nonlinear System With Cyclic Symmetry: Nonlinear Forced Localization
,”
Nonlinear Dyn.
,
7
(
1
), pp.
85
104
.https://rdcu.be/cOdXu
14.
Georgiades
,
F.
,
Peeters
,
M.
,
Kerschen
,
G.
,
Golinval
,
J.-C.
, and
Ruzzene
,
M.
,
2009
, “
Modal Analysis of a Nonlinear Periodic Structure With Cyclic Symmetry
,”
AIAA J.
,
47
(
4
), pp.
1014
1025
.10.2514/1.40461
15.
Grolet
,
A.
, and
Thouverez
,
F.
,
2011
, “
Vibration Analysis of a Nonlinear System With Cyclic Symmetry
,”
ASME J. Eng. Gas Turbines Power
,
133
(
2
), p. 022502.10.1115/1.4001989
16.
Zuo
,
L.
, and
Curnier
,
A.
,
1994
, “
Non-Linear Real and Complex Modes of Conewise Linear Systems
,”
J. Sound Vib.
,
174
(
3
), pp.
289
313
.10.1006/jsvi.1994.1277
17.
Chen
,
S.-L.
, and
Shaw
,
S. W.
,
1996
, “
Normal Modes for Piecewise Linear Vibratory Systems
,”
Nonlinear Dyn.
,
10
(
2
), pp.
135
164
.10.1007/BF00045454
18.
Shaw
,
S.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
19.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.10.1006/jsvi.1993.1198
20.
Chati
,
M.
,
Rand
,
R.
, and
Mukherjee
,
S.
,
1997
, “
Modal Analysis of a Cracked Beam
,”
J. Sound Vib.
,
207
(
2
), pp.
249
270
.10.1006/jsvi.1997.1099
21.
Jiang
,
D.
,
Pierre
,
C.
, and
Shaw
,
S.
,
2004
, “
Large-Amplitude Non-Linear Normal Modes of Piecewise Linear Systems
,”
J. Sound Vib.
,
272
(
3–5
), pp.
869
891
.10.1016/S0022-460X(03)00497-8
22.
Moussi
,
E. H.
,
Bellizzi
,
S.
,
Cochelin
,
B.
, and
Nistor
,
I.
,
2015
, “
Nonlinear Normal Modes of a Two Degrees-of-Freedom Piecewise Linear System
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
266
281
.10.1016/j.ymssp.2015.03.017
23.
Bertsekas
,
D. P.
,
2014
,
Constrained Optimization and Lagrange Multiplier Methods
,
Academic Press
, Cambridge, MA.
24.
Peeters
,
M.
,
Viguié
,
R.
,
Sérandour
,
G.
,
Kerschen
,
G.
, and
Golinval
,
J.-C.
,
2009
, “
Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
195
216
.10.1016/j.ymssp.2008.04.003
You do not currently have access to this content.