Abstract

In contact analysis, reducing the computing time has been an issue under the premise of ensuring calculation accuracy around the region with violent stress changes. To improve computational efficiency for contact analysis in flexible multibody system, this paper proposes an adaptive local mesh refinement and coarsening approach based on analysis-suitable T-splines (ASTS). First, the kinematic model of thin plate is established based on analysis-suitable T-spline surface, and large deformation of flexible thin plate is described by the elastic model created by nonlinear Green–Lagrange strain. Second, to reduce computing time in contact analysis and ensure analysis accuracy, based on contact state and refinement distance, an effective adaptive local element mesh update method is proposed, which only refine locally on subject's refinement region and integrate redundant elements to reduce the degree-of-freedom (DOF) of system. Third, to analyze the system with varying mesh, a new solving algorithm with dynamic variables and geometry update routine is developed. Finally, performance of the proposed method in static and dynamic simulation is validated by four numerical examples. Results and consuming time of ASTS-based varying mesh prove the feasibility of the proposed method in contact problems.

References

1.
Perduta
,
A.
, and
Putanowicz
,
R.
,
2019
, “
Tools and Techniques for Building Models for Isogeometric Analysis
,”
Adv. Eng. Software
,
127
, pp.
70
81
.10.1016/j.advengsoft.2018.10.008
2.
Tran
,
L. V.
,
Lee
,
J.
,
Nguyen-Van
,
H.
,
Nguyen-Xuan
,
H.
, and
Wahab
,
M. A.
,
2015
, “
Geometrically Nonlinear Isogeometric Analysis of Laminated Composite Plates Based on Higher-Order Shear Deformation Theory
,”
Int. J. Non-Linear Mech.
,
72
, pp.
42
52
.10.1016/j.ijnonlinmec.2015.02.007
3.
Hashemian
,
A.
, and
Hosseini
,
S. F.
,
2019
, “
Nonlinear Bifurcation Analysis of Statically Loaded Free-Form Curved Beams Using Isogeometric Framework and Pseudo-Arclength Continuation
,”
Int. J. Non-Linear Mech.
,
113
, pp.
1
16
.10.1016/j.ijnonlinmec.2019.03.002
4.
Dimitri
,
R.
,
De Lorenzis
,
L.
,
Scott
,
M. A.
,
Wriggers
,
P.
,
Taylor
,
R. L.
, and
Zavarise
,
G.
,
2014
, “
Isogeometric Large Deformation Frictionless Contact Using T-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
269
, pp.
394
414
.10.1016/j.cma.2013.11.002
5.
Lai
,
W. J.
,
Yu
,
T. T.
,
Bui
,
T. Q.
,
Wang
,
Z. G.
,
Curiel-Sosa
,
J. L.
,
Das
,
R.
, and
Hirose
,
S.
,
2017
, “
3-D Elasto-Plastic Large Deformations: IGA Simulation by Bézier Extraction of NURBS
,”
Adv. Eng. Software
,
108
, pp.
68
82
.10.1016/j.advengsoft.2017.02.011
6.
Otto
,
P.
,
De Lorenzis
,
L.
, and
Unger
,
J. F.
,
2020
, “
Explicit Dynamics in Impact Simulation Using a NURBS Contact Interface
,”
Int. J. Numer. Methods Eng.
,
121
(
6
), pp.
1248
1267
.10.1002/nme.6264
7.
Otto
,
P.
,
De Lorenzis
,
L.
, and
Unger
,
J. F.
,
2019
, “
Coupling a NURBS Contact Interface With a Higher Order Finite Element Discretization for Contact Problems Using the Mortar Method
,”
Comput. Mech.
,
63
(
6
), pp.
1203
1222
.10.1007/s00466-018-1645-y
8.
Temizer
,
İ.
,
Wriggers
,
P.
, and
Hughes
,
T. J. R.
,
2012
, “
Three-Dimensional Mortar-Based Frictional Contact Treatment in Isogeometric Analysis With NURBS
,”
Comput. Methods Appl. Mech. Eng.
,
209
, pp.
115
128
.10.1016/j.cma.2011.10.014
9.
Temizer
,
İ.
,
Wriggers
,
P.
, and
Hughes
,
T. J. R.
,
2011
, “
Contact Treatment in Isogeometric Analysis With NURBS
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
9–12
), pp.
1100
1112
.10.1016/j.cma.2010.11.020
10.
Agrawal
,
V.
, and
Gautam
,
S. S.
,
2020
, “
Varying-Order NURBS Discretization: An Accurate and Efficient Method for Isogeometric Analysis of Large Deformation Contact Problems
,”
Comput. Methods Appl. Mech. Eng.
,
367
, pp.
113
125
.10.1016/j.cma.2020.113125
11.
Pi
,
T.
, and
Zhang
,
Y. Q.
,
2019
, “
Modeling and Simulation of Revolute Clearance Joint With Friction Using the NURBS-Based Isogeometric Analysis
,”
Nonlinear Dyn.
,
95
(
1
), pp.
195
215
.10.1007/s11071-018-4559-5
12.
Sederberg
,
T. W.
,
Cardon
,
D. L.
,
Finnigan
,
G. T.
,
North
,
N. S.
,
Zheng
,
J. M.
, and
Lyche
,
T.
,
2004
, “
T-Spline Simplification and Local Refinement
,”
ACM Trans. Graphics
,
23
(
3
), pp.
276
283
.10.1145/1015706.1015715
13.
Forsey
,
D. R.
, and
Bartels
,
R. H.
,
1988
, “
Hierarchical B-Spline Refinement Computer Graphics
,”
ACM SIGGRAPH
,
22
(
4
), pp.
205
212
.10.1145/378456.378512
14.
Zimmermann
,
C.
, and
Sauer
,
R. A.
,
2017
, “
Adaptive Local Surface Refinement Based on LR NURBS and Its Application to Contact
,”
Comput. Mech.
,
60
(
6
), pp.
1011
1031
.10.1007/s00466-017-1455-7
15.
Patrizi
,
F.
,
Manni
,
C.
,
Pelosi
,
F.
, and
Speleers
,
H.
,
2020
, “
Adaptive Refinement With Locally Linearly Independent LR B-Splines: Theory and Applications
,”
Comput. Methods Appl. Mech. Eng.
,
369
, pp.
113
230
.10.1016/j.cma.2020.113230
16.
Scherer
,
J.
,
2016
, “
Basics of T-Splines
,” accessed Aug. 8, 2022, https://help.autodesk.com/view/fusion360/ENU/courses/AP-BASICS-OF-T-SPLINES
17.
Galpern
,
F.
,
2005
, “
T-Splines Review: Plugging Into Maya for Better Results
,” accessed Aug. 8, 2022, https://www.awn.com/vfxworld/t-splines-review-plugging-maya-better-results
18.
Holmes
,
S.
,
2010
, “
T-Splines Rhino
,” accessed Aug. 8, 2022, https://develop3d.com/product-design/t-splines-for-rhino/
19.
Benson
,
D. J.
,
Bazilevs
,
Y.
,
De Luycker
,
E.
,
Hsu
,
M.-C.
,
Scott
,
M.
,
Hughes
,
T. J. R.
, and
Belytschko
,
T.
,
2010
, “
A Generalized Finite Element Formulation for Arbitrary Basis Functions: From Isogeometric Analysis to XFEM
,”
Int. J. Numer. Methods Eng.
,
83
(
6
), pp.
765
785
.10.1002/nme.2864
20.
Singh
,
S. K.
,
Singh
,
I. V.
,
Mishra
,
B. K.
,
Bhardwaj
,
G.
, and
Bui
,
T. Q.
,
2017
, “
A Simple, Efficient and Accurate Bézier Extraction Based T-Spline XIGA for Crack Simulations
,”
Theor. Appl. Fract. Mech.
,
88
, pp.
74
96
.10.1016/j.tafmec.2016.12.002
21.
Chen
,
L.
,
Verhoosel
,
C. V.
, and
de Borst
,
R.
,
2018
, “
Discrete Fracture Analysis Using Locally Refined T-Splines
,”
Int. J. Numer. Methods Eng.
,
116
(
2
), pp.
117
140
.10.1002/nme.5917
22.
Chen
,
L.
,
Li
,
B.
, and
de Borst
,
R.
,
2020
, “
Adaptive Isogeometric Analysis for Phase-Field Modeling of Anisotropic Brittle Fracture
,”
Int. J. Numer. Methods Eng.
,
121
(
20
), pp.
4630
4648
.10.1002/nme.6457
23.
Buffa
,
A.
,
Cho
,
D.
, and
Sangalli
,
G.
,
2010
, “
Linear Independence of the T-Spline Blending Functions Associated With Some Particular T-Meshes
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
23–24
), pp.
1437
1445
.10.1016/j.cma.2009.12.004
24.
Casquero
,
H.
,
Liu
,
L.
,
Zhang
,
Y. J.
,
Reali
,
A.
, and
Gomez
,
H.
,
2016
, “
Isogeometric Collocation Using Analysis-Suitable T-Splines of Arbitrary Degree
,”
Comput. Methods Appl. Mech. Eng.
,
301
, pp.
164
186
.10.1016/j.cma.2015.12.014
25.
Li
,
X.
, and
Scott
,
M. A.
,
2014
, “
Analysis-Suitable T-Splines: Characterization, Refineability, and Approximation
,”
Math. Models Meth. Appl. Sci.
,
24
(
06
), pp.
1141
1164
.10.1142/S0218202513500796
26.
Beirão da Veiga
,
L.
,
Buffa
,
A.
,
Cho
,
D.
, and
Sangalli
,
G.
,
2012
, “
Analysis-Suitable T-Splines Are Dual-Compatible
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
, pp.
42
51
.10.1016/j.cma.2012.02.025
27.
Liu
,
L.
,
Zhang
,
Y. J.
, and
Wei
,
X. D.
,
2015
, “
Handling Extraordinary Nodes With Weighted T-Spline Basis Functions
,”
Procedia Eng.
,
124
, pp.
161
173
.10.1016/j.proeng.2015.10.130
28.
Li
,
X.
,
Zheng
,
J. M.
,
Sederberg
,
T. W.
,
Hughes
,
T. J. R.
, and
Scott
,
M. A.
,
2012
, “
On Linear Independence of T-Spline Blending Functions
,”
Comput.-Aided Geometric. Des.
,
29
(
1
), pp.
63
76
.10.1016/j.cagd.2011.08.005
29.
Li
,
X.
,
2015
, “
Some Properties for Analysis-Suitable T-Splines
,”
J. Comput. Math.
,
33
(
4
), pp.
428
442
.10.4208/jcm.1504-m4493
30.
Casquero
,
H.
,
Liu
,
L.
,
Zhang
,
Y. J.
,
Reali
,
A.
,
Kiendl
,
J.
, and
Gomez
,
H.
,
2017
, “
Arbitrary-Degree T-Splines for Isogeometric Analysis of Fully Nonlinear Kirchhoff-Love Shells
,”
Comput.-Aided Des.
,
82
, pp.
140
153
.10.1016/j.cad.2016.08.009
31.
Casquero
,
H.
,
Wei
,
X. D.
,
Toshniwal
,
D.
,
Li
,
A.
,
Hughes
,
T. J. R.
,
Kiendl
,
J.
, and
Zhang
,
Y. J.
,
2020
, “
Seamless Integration of Design and Kirchhoff-Love Shell Analysis Using Analysis-Suitable Unstructured T-Splines
,”
Comput. Meth. Appl. Mech. Eng.
,
360
, p.
112765
.10.1016/j.cma.2019.112765
32.
Habib
,
S. H.
, and
Belaidi
,
I.
,
2017
, “
Extended Isogeometric Analysis Using Analysis-Suitable T-Splines for Plane Crack Problems
,”
Mechanika
,
23
(
1
), pp.
11
17
.10.5755/j01.mech.23.1.13475
33.
Habib
,
S. H.
, and
Belaidi
,
I.
,
2017
, “
Crack Analysis in Bimaterial Interfaces Using T-Spline Based XIGA
,”
J. Theory Appl. Mech.
,
55
(
1
), pp.
55
68
.
34.
Thomas
,
D. C.
,
Scott
,
M. A.
,
Evans
,
J. A.
,
Tew
,
K.
, and
Evans
,
E. J.
,
2015
, “
Bézier Projection: A Unified Approach for Local Projection and Quadrature-Free Refinement and Coarsening of NURBS and T-Splines With Particular Application to Isogeometric Design and Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
284
, pp.
55
105
.10.1016/j.cma.2014.07.014
35.
Scott
,
M. A.
,
Borden
,
M. J.
,
Verhoosel
,
C. V.
,
Sederberg
,
T. W.
, and
Hughes
,
T. J. R.
,
2011
, “
Isogeometric Finite Element Data Structures Based on Bézier Extraction of T-Splines
,”
Int. J. Numer. Methods Eng.
,
88
(
2
), pp.
126
156
.10.1002/nme.3167
36.
Luo
,
K.
,
Liu
,
C.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2016
, “
An Efficient Model Reduction Method for Buckling Analyses of Thin Shells Based on IGA
,”
Comput. Methods Appl. Mech. Eng.
,
309
, pp.
243
268
.10.1016/j.cma.2016.06.006
37.
Wang
,
Q. T.
,
2016
, “
Contact Dynamics of Thin Beams Subject to Overall Motions and Large Deformations
,” Ph.D. dissertation,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, Jiangsu
.
38.
Wang
,
Q. T.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2016
, “
Dynamic Simulation of Frictional Multi-Zone Contacts of Thin Beams
,”
Nonlinear Dyn.
,
83
(
4
), pp.
1919
1937
.10.1007/s11071-015-2456-8
39.
Wang
,
Q. T.
,
Tian
,
Q.
, and
Hu
,
H. Y.
,
2014
, “
Dynamic Simulation of Frictional Contacts of Thin Beams During Large Overall Motions Via Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
77
(
4
), pp.
1411
1425
.10.1007/s11071-014-1387-0
40.
Lan
,
P.
,
Cui
,
Y. Q.
, and
Yu
,
Z. Q.
,
2019
, “
A Novel Absolute Nodal Coordinate Formulation Thin Plate Tire Model With Fractional Derivative Viscosity and Surface Integral-Based Contact Algorithm
,”
Proc. Inst. Mech. Eng.
,
233
(
3
), pp.
583
597
.10.1177/1464419318816527
You do not currently have access to this content.